scholarly journals STUDIES ON THE CHEMICAL STRUCTURE OF THE STREPTOCOCCAL CELL WALL

1962 ◽  
Vol 115 (1) ◽  
pp. 49-62 ◽  
Author(s):  
Richard M. Krause ◽  
Maclyn McCarty

The trypsinized cell walls of Group C streptococci contain two components, the group-specific carbohydrate and a mucopeptide polymer. Hot formamide extraction of Group C cell walls results in a soluble group-specific carbohydrate fraction and an insoluble mucopeptide residue. This mucopeptide, similar in composition to that of Groups A and A-variant streptococci, contains N-acetylglucosamine, N-acetylmuramic acid, alanine, glutamic acid, lysine, and glycine. It is dissolved by the muralytic enzymes, including lysozyme, which does not attack the whole cell wall. Lysis of the cell wall by phage-associated lysin results in the release of soluble fragments composed of the elements of mucopeptide. Group C carbohydrate extracted with formamide is composed primarily of N-acetylgalactosamine and rhamnose. Serological studies suggest that the specificity of Group C carbohydrate is determined by the N-acetylgalactosamine.

1961 ◽  
Vol 114 (1) ◽  
pp. 127-140 ◽  
Author(s):  
Richard M. Krause ◽  
Maclyn McCarty

Lysis of trypsinized Group A streptococcal cell walls with phage-associated lysin releases into solution dialyzable and non-dialyzable mucopeptide fractions composed of N-acetylglucosamine, N-acetylmuramic acid and alanine, glutamic acid, lysine, and glycine in addition to the characteristic group-specific carbohydrate. The latter substance contains appreciable amounts of N-acetylmuramic acid and the amino acids as well as N-acetylglucosamine and rhamnose. Hot formamide extraction of the cell walls results in a soluble fraction of group-specific carbohydrate and an insoluble residue. The Group A carbohydrate in this instance is composed of rhamnose and N-acetylglucosamine. The composition of the insoluble residue is similar to that of the mucopeptide fractions released from the cell wall by phage-associated lysin. This residue was shown by electron microscopy to be composed of discrete discs which appear similar in structure to the intact cell wall. The specific carbohydrate obtained by hot formamide extraction of Group A-variant cell walls was composed almost exclusively of rhamnose. The residue fraction was similar to that of Group A. The residue of cell walls extracted with hot formamide is extensively solubilized not only by phage-associated lysin and S. albus enzyme, but also by lysozyme, which has no measurable effect on the intact streptococcal cell wall.


1964 ◽  
Vol 119 (6) ◽  
pp. 997-1004 ◽  
Author(s):  
Stephen N. Curtis ◽  
Richard M. Krause

Group G hemolytic streptococcal cell walls which have been treated with trypsin are composed of a group-specific polysaccharide moiety and a mucopeptide matrix. The mucopeptide contains N-acetylglucosamine, N-acetylmuramic acid, alanine, glutamic acid, lysine, and glycine, a composition similar to that of other groups of streptococci. The Group G carbohydrate is composed of rhamnose, N-acetylgalactosamine, and galactose. Serological studies suggest that the monosaccharide of L-rhamnose is a major component of the determinant of antigenic specificity.


1989 ◽  
Vol 170 (2) ◽  
pp. 369-382 ◽  
Author(s):  
S Q DeJoy ◽  
K M Ferguson ◽  
T M Sapp ◽  
J B Zabriskie ◽  
A L Oronsky ◽  
...  

Primary lymph node cells derived from streptococcal cell wall arthritic rats or those derived from adjuvant arthritic rats proliferated in response to cell wall antigens derived from either streptococcal cell walls or those from M. tuberculosis. In addition, two T cell lines have been isolated from lymph nodes of rats during the chronic phase of streptococcal cell wall arthritis. These T cell lines transfered clinical disease to naive syngeneic irradiated recipients, and they proliferated in the presence of cell wall antigens derived from streptococci or antigens derived from Mycobacterium but failed to proliferate in the presence of the 65-kD antigen (containing the sequence TFGLQLELT) derived from Mycobacterium. These observations indicate that T cells play a crucial role in the pathogenesis of streptococcal cell wall arthritis and suggest that antigenic crossreactivity exists between cell walls of group A streptococci and antigens derived from Mycobacterium. The 65-kD Mycobacterium protein is not involved in the observed antigenic crossreactivity.


1965 ◽  
Vol 122 (5) ◽  
pp. 877-890 ◽  
Author(s):  
Jiri Rotta ◽  
Thomas J. Prendergast ◽  
Walter W. Karakawa ◽  
Charles K. Harmon ◽  
Richard M. Krause

The streptococcal cell wall mucopeptide when injected into mice either intraperitoneally or intravenously enhances the resitance to subsequent challenge with virulent Group A streptococci. Rabbits which are injected intravenously with solubilized mucopeptide develop a fever response which has a resemblance to that achieved with endotoxin. Mice which survive 6 to 7 weeks after challenge with virulent Group A streptococci yield at autopsy search Group A streptococci serologically identical to the challenge organisms. A preparative dose of cell walls injected into mice prior to challenge diminished this late recovery of streptococci. Group A-variant streptococci were recovered from mice which survived challenge and carried the organisms for several weeks. Filterable bacterial forms, which grew on L form media, were recovered from infected mice. The serologic type of the L forms was identical to that of the challenge organisms.


IAWA Journal ◽  
1991 ◽  
Vol 12 (4) ◽  
pp. 439-444 ◽  
Author(s):  
Ryo Funada ◽  
Anne-Marie Catesson

Cytochemical changes in cambia! cell walls were studied during the transition from rest to mitotic activity in spring. A partial autolysis occurred in the radial walls especially at cell junctions. The lysis was closely associated with a localised decrease in the level of calcium ions bound to the cell walls.


2000 ◽  
Vol 68 (6) ◽  
pp. 3535-3540 ◽  
Author(s):  
Egle Šimelyte ◽  
Marja Rimpiläinen ◽  
Leena Lehtonen ◽  
Xiang Zhang ◽  
Paavo Toivanen

ABSTRACT To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls were resistant to lysozyme degradation, whereas the L. fermentum cell wall was lysozyme sensitive. Muramic acid was observed in the liver, spleen, and lymph nodes in considerably larger amounts after injection of an arthritogenicL. casei cell wall than following injection of a nonarthritogenic L. fermentum cell wall. The L. casei cell wall also persisted in the tissues longer than theL. fermentum cell wall. The present results, taken together with those published previously, underline the possibility that the chemical structure of peptidoglycan is important in determining the arthritogenicity of the bacterial cell wall.


1974 ◽  
Vol 20 (7) ◽  
pp. 905-913 ◽  
Author(s):  
K. G. Johnson ◽  
I. J. McDonald

Cell walls were prepared from parental and filamentous cells of Streptococcus cremoris HP. In addition to aspartic acid, glutamic acid, alanine, and lysine in a 1:2:3:1 ratio, such preparations contained hot formamide-extractable material composed of glucosamine, glucosa-mine-6-phosphate, glucose, galactose, and rhamnose. Parental and filamentous cell walls contained, respectively, 210 and 225 disaccharide units per milligram. The ratio of muramic acid: peptide subunits was about 1.3 for both preparations.Enzymic and chemical analyses revealed that glycan strands are incompletely substituted, peptide cross-bridging is not mediated by D-alanyl-L-alanyl linkages, peptide subunits are linked together to form large moieties, and no significant differences in peptidoglycan structure exist between parental and filamentous cell walls.Analysis by dinitrophenylation techniques disclosed the presence of significant quantities of glucosamine and muramic acid residues with free amino groups in the peptidoglycans of both cell wall preparations. Conversion of such groups by dinitrophenylation or N-acetylation greatly enhanced the response of cell walls to lysozyme digestion.


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 87 ◽  
Author(s):  
Enguang Xu ◽  
Dong Wang ◽  
Lanying Lin

The mechanical properties of individual fibers are related to the production and performance of papers and fiberboards. This paper examines the behavior of the microstructure constituents of wood subjected to acid and alkali treatments. The chemical structure and mechanical properties of wood cell walls with different acid or alkali treatments was analyzed. The results show that, compared with acid treatment, the crystal size and crystallinity index of cellulose increased after alkali treatment, resulting in an increase in the cell wall elastic modulus. The mechanical properties of the wood cell wall S2 region were higher than those of the compound middle lamella (CML) region. There was a topochemical effect between the CML and the S2 region in acid and alkali-treated samples, which provided a major threshold that facilitates the production/separation of wood fibers for better strength fiber properties.


1968 ◽  
Vol 127 (3) ◽  
pp. 489-505 ◽  
Author(s):  
Vincent A. Fischetti ◽  
John B. Zabriskie

Evidence has been presented that Group C bacteriophages differ as to their inactivating site on the streptococcal cell wall. While all three phages adsorb to isolated cell walls, only the C1 phage was inactivated by enzymatically prepared group-specific carbohydrate. None of the Group C phages were inactivated by chemically extracted group-specific carbohydrate. In contrast, all virulent Group A streptococcal bacteriophages adsorbed only to living Group A streptococci. However, Group A temperate phages were able to adsorb to isolated cell walls but not to group-specific carbohydrate. While it has not been possible to identify the specific inactivating substance for the Group A virulent phages, certain pieces of evidence indirectly implicate the group-specific carbohydrate, specifically the N-acetylglucosamine moiety. The fact that Group A virulent phages failed to adsorb to heat-killed Group A streptococcal cells suggests that additional factors produced by the living cell are needed for complete viral inactivation.


Sign in / Sign up

Export Citation Format

Share Document