scholarly journals Secretion of plasminogen activator by human polymorphonuclear leukocytes. Modulation by glucocorticoids and other effectors.

1977 ◽  
Vol 146 (6) ◽  
pp. 1693-1706 ◽  
Author(s):  
A Granelli-Piperno ◽  
J D Vassalli ◽  
E Reich

Purified human PMNs secrete plasminogen activator. This secretion is stimulated by Con A and low concentrations of PMA, and is inhibited by low concentrations of glucocorticoids, and by cAMP, actinomycin D, and cycloheximide. In contrast, the release of granule-bound enzymes, such as elastase, is achieved only at higher concentrations of PMA, and is not affected by any of the inhibitors that block plasminogen activator production. These results show that the production of plasminogen activatory by PMNs is controlled by agents that affect inflammations, and that this control is not shared by other lytic enzymes known to be associated with these cells. This suggests a particular role for plasminogen activator in the response pattern of PMNs and also supports the concept, previously developed for macrophages, that the secretion of this enzyme is correlated with cell migration in vivo.

1992 ◽  
Vol 119 (5) ◽  
pp. 1261-1270 ◽  
Author(s):  
L Cassimeris ◽  
D Safer ◽  
V T Nachmias ◽  
S H Zigmond

Thymosin beta 4 (T beta 4), a 5-kD peptide which binds G-actin and inhibits its polymerization (Safer, D., M. Elzinga, and V. T. Nachmias. 1991. J. Biol. Chem. 266:4029-4032), appears to be the major G-actin sequestering protein in human PMNs. In support of a previous study by Hannappel, E., and M. Van Kampen (1987. J. Chromatography. 397:279-285), we find that T beta 4 is an abundant peptide in these cells. By reverse phase HPLC of perchloric acid supernatants, human PMNs contain approximately 169 fg/cell +/- 90 fg/cell (SD), corresponding to a cytoplasmic concentration of approximately 149 +/- 80.5 microM. On non-denaturing polyacrylamide gels, a large fraction of G-actin in supernatants prepared from resting PMNs has a mobility similar to the G-actin/T beta 4 complex. Chemoattractant stimulation of PMNs results in a decrease in this G-actin/T beta 4 complex. To determine whether chemoattractant induced actin polymerization results from an inactivation of T beta 4, the G-actin sequestering activity of supernatants prepared from resting and chemoattractant stimulated cells was measured by comparing the rates of pyrenyl-actin polymerization from filament pointed ends. Pyrenyl actin polymerization was inhibited to a greater extent in supernatants from stimulated cells and these results are qualitatively consistent with T beta 4 being released as G-actin polymerizes, with no chemoattractant-induced change in its affinity for G-actin. The kinetics of bovine spleen T beta 4 binding to muscle pyrenyl G-actin are sufficiently rapid to accommodate the rapid changes in actin polymerization and depolymerization observed in vivo in response to chemoattractant addition and removal.


1994 ◽  
Vol 156 (2) ◽  
pp. 296-309 ◽  
Author(s):  
Osamu Takeichi ◽  
Ichiro Saito ◽  
Tamotsu Tsurumachi ◽  
Tsuyoshi Saito ◽  
Itaru Moro

1998 ◽  
Vol 42 (7) ◽  
pp. 1745-1750 ◽  
Author(s):  
Anna Maria Cuffini ◽  
Vivian Tullio ◽  
Alessandro Bonino ◽  
Alessandra Allocco ◽  
Angela Ianni Palarchio ◽  
...  

ABSTRACT The entry of antibiotics into phagocytes is necessary for activity against intracellular pathogens. The ability of sanfetrinem, the first member of a new class of antibiotics, to penetrate human polymorphonuclear granulocytes and its consequences upon subsequent phagocytosis and killing of ingested penicillin-resistantStreptococcus pneumoniae have been evaluated. Sanfetrinem penetrated into human polymorphonuclear leukocytes (PMNs) at all concentrations tested, with cellular concentration/extracellular concentration ratios of 6.6 to 5.03 and 4.21 when sanfetrinem was used at 0.25 to 0.5 and 1 μg/ml, respectively, within 30 min of incubation. The uptake was complete within 5 min and was not energy dependent, since it was not affected by cell viability, environmental temperature, or the addition of a metabolic inhibitor. At a concentration of one-half the MIC, sanfetrinem significantly enhanced human PMN phagocytosis and increased intracellular bactericidal activity against penicillin-resistant S. pneumoniae. Following preexposure of PMNs to a concentration of one-half the MIC of sanfetrinem, there was a significant increase in both phagocytosis and killing compared with that for the controls, indicating the ability of sanfetrinem to interact with biological membranes and remain active within PMNs. Preexposure of streptococci to sanfetrinem made penicillin-resistant S. pneumoniae more susceptible to the bactericidal mechanisms of human PMNs than untreated organisms.


Blood ◽  
2010 ◽  
Vol 116 (20) ◽  
pp. 4288-4296 ◽  
Author(s):  
Magali Pederzoli-Ribeil ◽  
Francesco Maione ◽  
Dianne Cooper ◽  
Adam Al-Kashi ◽  
Jesmond Dalli ◽  
...  

Abstract Human polymorphonuclear leukocytes adhesion to endothelial cells during the early stage of inflammation leads to cell surface externalization of Annexin A1 (AnxA1), an effector of endogenous anti-inflammation. The antiadhesive properties of AnxA1 become operative to finely tune polymorphonuclear leukocytes transmigration to the site of inflammation. Membrane bound proteinase 3 (PR3) plays a key role in this microenvironment by cleaving the N terminus bioactive domain of AnxA1. In the present study, we generated a PR3-resistant human recombinant AnxA1—named superAnxA1 (SAnxA1)—and tested its in vitro and in vivo properties in comparison to the parental protein. SAnxA1 bound and activated formyl peptide receptor 2 in a similar way as the parental protein, while showing a resistance to cleavage by recombinant PR3. SAnxA1 retained anti-inflammatory activities in the murine inflamed microcirculation (leukocyte adhesion being the readout) and in skin trafficking model. When longer-lasting models of inflammation were applied, SAnxA1 displayed stronger anti-inflammatory effect over time compared with the parental protein. Together these results indicate that AnxA1 cleavage is an important process during neutrophilic inflammation and that controlling the balance between AnxA1/PR3 activities might represent a promising avenue for the discovery of novel therapeutic approaches.


1989 ◽  
Vol 67 (5) ◽  
pp. 456-464 ◽  
Author(s):  
J. Gillard ◽  
A. W. Ford-Hutchinson ◽  
C. Chan ◽  
S. Charleson ◽  
D. Denis ◽  
...  

L-663,536 (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2-dimethylpropanoic acid) is a potent inhibitor of leukotriene (LT) biosynthesis in intact human polymorphonuclear leukocytes (PMN) (IC50, 2.5 nM). Similarly, L-663,536 inhibited A23187-induced LTB4 formation by rat peripheral blood and elicited PMN. At concentrations where inhibition of leukotriene biosynthesis occurred in human whole blood (1.1 μM), no effect was seen on cyclooxygenase or 12-lipoxygenase, an effect also observed in washed human platelets. The compound had no effect on rat or porcine 5-lipoxygenase indicating that L-663,536 is not a direct 5-lipoxygenase inhibitor. When administered in vivo L-663,536 was a potent inhibitor of antigen-induced dyspnea in inbred rats pretreated with methysergide (ED50, 0.036 mg/kg p.o.) and of Ascaris-induced bronchoconstriction in squirrel monkeys (1 mg/kg p.o.). The compound inhibited leukotriene biosynthesis in vivo in a rat pleurisy model (ED50, 0.2 mg/kg p.o.), an inflamed rat paw model (ED50, 0.8 mg/kg), a model of leukotriene excretion in rat bile following antigen provocation, and a model in the guinea-pig ear where leukotriene synthesis was induced by topical challenge with ionophore A23187 (ED50, 2.5 mg/kg p.o. and 0.6 μg topically). The results indicate that L-663,536 is a potent inhibitor of leukotriene biosynthesis both in vitro and in vivo indicating that the compound is suitable for studying the role of leukotrienes in a variety of pathological situations.Key words: leukotriene, 5-lipoxygenase, polymorphonuclear leukocytes, leukotriene B4, leukotriene inhibitor.


Blood ◽  
2005 ◽  
Vol 106 (8) ◽  
pp. 2871-2878 ◽  
Author(s):  
Praxedis Martin ◽  
Reinhard Wallich ◽  
Julian Pardo ◽  
Arno Müllbacher ◽  
Markus Munder ◽  
...  

AbstractPolymorphonuclear leukocytes have been shown to use a multitude of effector functions to combat pathogens and tumors, including enzymes, defensins, and toxic products such as oxygen radicals and nitrogen oxides. Recent studies provided evidence for the expression of granzymes (gzms) and perforin (perf) within the cytotoxic arsenal of human neutrophils, the validity of which was questioned by 2 subsequent studies. We have now used cytology, intracellular flow cytometry, enzymatic assays, immunoelectron microscopy, and quantitative reverse transcriptase-polymerase chain reaction to obtain evidence of the presence of gzms and/or perf in mouse Gr-1+ granulocyte populations. The data obtained clearly demonstrate that neither in vitro- nor in vivo-derived mouse granulocytes synthesize gzmA and gzmB or perf, even following infection/immunization with pathogens or pathogen-derived material. A parallel comparable analysis on the expression of gzmB in human neutrophils from 3 healthy control subjects and 4 patients with diverse diseases failed to detect gzmB expression. The data indicate that polymorphonuclear leukocytes from mice and humans lack the 3 cytotoxic effector molecules, gzmA, gzmB, and perf, generally associated with natural killer and cytotoxic T lymphocytes. (Blood. 2005;106:2871-2878)


1990 ◽  
Vol 95 (3) ◽  
pp. 487-498
Author(s):  
T.J. Hurst ◽  
J.M. Wilton

We have studied the ability of human polymorphonuclear leukocytes (PMN) to phagocytose Capnocytophaga ochracea in three-dimensional fibrin meshworks. Phagocytosis was assessed in three systems: (1) the PMN and bacteria were mixed together with plasma and clotted; 60 +/− 13% phagocytosis occurred after 60 min; (2) PMN were overlaid on clots containing bacteria; the PMN migrated into the clot and after 60 min 52 +/− 7% phagocytosis was seen; (3) PMN had to migrate from within one clot into a second containing bacteria; phagocytosis after 60 min was 54 +/− 3%. In the clots, PMN released lysozyme but this was not significantly enhanced by phagocytosis. These findings indicate that PMN are capable of phagocytosing in each of the three-dimensional systems tested and that they are capable of both migration into and subsequent phagocytosis in a model that more closely mimics the in vivo structure in which PMN would normally perform.


Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 2136-2143 ◽  
Author(s):  
KB Stevenson ◽  
RA Clark ◽  
WM Nauseef

Abstract Erythrocytes possess a well-characterized submembranous filamentous network which interacts with transmembrane glycoproteins and is composed primarily of spectrin, ankyrin, band 4.1, and short actin filaments. An analogous structure was recently described in platelets. Human polymorphonuclear leukocytes (PMNs) were examined for the presence and plasma membrane association of similar proteins. Isolated PMNs, free of contamination with erythrocytes or platelets, were disrupted by nitrogen cavitation and separated into subcellular organelles on a discontinuous Percoll gradient. Detergent lysates of plasma membrane vesicles, but not azurophilic or specific granules, contained insoluble actin filaments and associated proteins. Immunoblots of detergent-insoluble plasma membrane fractions contained proteins recognized by antibodies to brain fodrin and erythrocyte band 4.1, whereas blots probed with antibodies to erythrocyte spectrin and ankyrin were negative. Fodrin and band 4.1 were not detected in granule fractions, but some fodrin was present in the cytosol. The association of proteins related to fodrin and band 4.1 with the plasma membrane suggests that PMNs contain a submembranous skeleton structurally analogous to that of erythrocytes and platelets. The specific function of these proteins and their structural organization in human PMNs await further study.


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4761-4769 ◽  
Author(s):  
Vania Hinkovska-Galcheva ◽  
Lars Kjeldsen ◽  
Pamela J. Mansfield ◽  
Laurence A. Boxer ◽  
James A. Shayman ◽  
...  

Abstract The sphingomyelin cycle, which plays an important role in regulation of cell growth, differentiation, and apoptosis, involves the formation of ceramide by the action of a membrane-associated, Mg2+-dependent, neutral sphingomyelinase and/or a lysosomal acid sphingomyelinase. In human polymorphonuclear leukocytes (PMNs), ceramide production correlates with and plays a role in the regulation of functional responses such as oxidant release and Fcγ receptor-mediated phagocytosis. To increase our understanding of the sphingomyelin cycle in human PMNs, the cellular location of neutral and acid sphingomyelinases was investigated in resting, formylmethionylleucylphenylalanine (FMLP)-activated, and FMLP-activated PMNs engaged in phagocytosis. In resting PMNs, a Mg2+-dependent, neutral sphingomyelinase was the predominant activity and was localized to the plasma membrane fractions along with the majority of ceramide. Upon FMLP-activation, there was a 1.9-fold increase in this neutral, Mg2+-dependent sphingomyelinase activity, which increased to 2.7-fold subsequent to phagocytosis of IgG opsonized targets. This increase in sphingomyelinase activity was restricted to the plasma membrane fractions, which were also the site of increased ceramide levels. Phospholipase D (PLD) activity, which is a target of ceramide action and is required for phagocytosis, was also found primarily in the plasma membrane fractions of FMLP-activated and phagocytosing PMNs. Our findings indicate that in human PMNs engaged in phagocytosis, the sphingomyelin cycle is restricted to the plasma membrane where intracellular targets of ceramide action, such as PLD, are localized.


Sign in / Sign up

Export Citation Format

Share Document