scholarly journals Experimental IgA nephropathy.

1979 ◽  
Vol 150 (5) ◽  
pp. 1161-1173 ◽  
Author(s):  
A Rifai ◽  
P A Small ◽  
P O Teague ◽  
E M Ayoub

An animal model for IgA immune complex nephritis was developed. IgA immune complexes formed in vitro with an IgA anti-dinitrophenyl (DNP) derived from MOPC-315 plasmacytoma, and dinitrophenylated bovine serum albumin (DNP-BSA) produced mild focal glomerulonephritis in mice. Similar, but more severe pathological changes were produced with complexes formed in vivo either in normal mice or MOPC-315 tumor-bearing mice. In contrast to the focal nature of the PAS-positive glomerular lesions observed by light microscopy, immunofluorescent examination revealed IgA deposits in all glomeruli. This discrepancy between immunofluorescent and histopathologic findings as well as the distribution of the immune complexes within the affected glomeruli, are some of the features which bear resemblance between this experimental model and human IgA nephropathy. Fixation of complements by DNP-BSA-IgA immune complexes, formed in vitro or in vivo, was shown to occur in the glomeruli of mice with IgA immune complex nephropathy. The pattern of C3 glomerular deposits was similar to that of IgA. However, complement proved to be nonessential for complex deposition. This conclusion is based on the observation that decomplemented mice, although showing no deposition of C3 in their glomerulus, developed glomerular immunohistological changes similar to those observed in experimental mice that were not decomplemented. Polymeric IgA was observed to be critical for renal deposition of complexes and induction of nephritic histological changes. In contrast, monomeric IgA immune complexes failed to produce glomerular deposits. This finding raises the possibility that secretory IgA, which is predominantly polymeric, may play a role in human IgA-associated glomerulonephritis.

2008 ◽  
Vol 172 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Michael E. Lamm ◽  
Steven N. Emancipator ◽  
Janet K. Robinson ◽  
Michifumi Yamashita ◽  
Hisashi Fujioka ◽  
...  

2020 ◽  
pp. 1-13
Author(s):  
Yaling Zhai ◽  
Xiaoqing Long ◽  
Jingge Gao ◽  
Xingchen Yao ◽  
Xinnian Wang ◽  
...  

<b><i>Background/Aims:</i></b> Renal vascular injury accounts for the poor outcomes of patients with IgA nephropathy (IgAN). In this study, we investigated whether endostatin, a potent inhibitor of angiogenesis, is associated with IgAN. <b><i>Methods:</i></b> Serum endostatin levels were detected in patients with IgAN, disease controls, and healthy controls, and the correlation among endostatin and clinicopathologic manifestations, as well as prognosis in patients with IgAN, was analyzed. In addition, serum endostatin levels were compared in patients “before” and “after” treatment. Data on endostatin expression in the renal interstitium of patients with IgAN were downloaded and analyzed from the GSE35489 array in the GEO database. The poly-IgA1 (pIgA) immune complex is widely recognized as the “trigger” of IgAN initiation. pIgA in the plasma of patients was extracted and used to stimulate human glomerular endothelial cells (GECs). Endostatin, IL-6, and CXCL1 in the cell supernatant were detected by ELISA kits. <b><i>Results:</i></b> We found that serum endostatin levels were significantly increased in patients with IgAN, as was endostatin expression in the renal interstitium. Patients with IgAN were divided into 2 groups according to the median value. The high endostatin expression group had significantly higher levels of serum creatinine and BUN and more severe tubular/interstitial damage. Moreover, patients with arteriolar injury and endothelial cell proliferation had higher serum endostatin levels. Patients with high serum endostatin levels had poor prognosis. According to the in vitro experiment, the GEC apoptosis rate and the supernatant levels of endostatin, IL-6, and CXCL1 were significantly increased following pIgA stimulation. <b><i>Conclusion:</i></b> Our study found that elevated endostatin expression was associated with disease severity and poor prognosis in patients with IgAN and can be upregulated by pIgA, but how it participates in the pathogenesis of IgAN deserves further exploration.


1980 ◽  
Vol 29 (2) ◽  
pp. 575-582
Author(s):  
Robert E. Baughn ◽  
Kenneth S. K. Tung ◽  
Daniel M. Musher

The in vivo and in vitro immunoglobulin G plaque-forming cell responses to sheep erythrocytes (SRBC) are nearly obliterated during disseminated syphilitic infection (3 to 8 weeks post-intravenous injection) in rabbits. Splenic and lymph node cells obtained from infected rabbits during this time period were capable of suppressing the normal in vitro responses of uninfected, SRBC-primed cells. Cell-free washings of cells from infected animals were also suppressive. This finding coupled with the fact that treatment of infected cells with proteolytic enzymes abrogated the suppressive effect constitute arguments against involvement of a specific suppressor cell population. The incidence of elevated levels of circulating immune complexes in the sera of rabbits with disseminated disease was also significantly different from that of uninfected controls or infected rabbits before the onset or after the regression of lesions. When added to cultures of lymphocytes from uninfected, SRBC-sensitized rabbits, sera containing complexes caused dose-related suppression of the in vitro immunoglobulin responses. Unlike immune complexes, no correlation was found between the presence of mucopolysaccharide materials and the stage of infection or the ability of serum to suppress the immunoglobulin responses to SRBC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunguang Yan ◽  
Jing Chen ◽  
Yue Ding ◽  
Zetian Zhou ◽  
Bingyu Li ◽  
...  

BackgroundThe ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR) γ plays crucial roles in diverse biological processes including cellular metabolism, differentiation, development, and immune response. However, during IgG immune complex (IgG-IC)-induced acute lung inflammation, its expression and function in the pulmonary tissue remains unknown.ObjectivesThe study is designed to determine the effect of PPARγ on IgG-IC-triggered acute lung inflammation, and the underlying mechanisms, which might provide theoretical basis for therapy of acute lung inflammation.SettingDepartment of Pathogenic Biology and Immunology, Medical School of Southeast UniversitySubjectsMice with down-regulated/up-regulated PPARγ activity or down-regulation of Early growth response protein 1 (Egr-1) expression, and the corresponding controls.InterventionsAcute lung inflammation is induced in the mice by airway deposition of IgG-IC. Activation of PPARγ is achieved by using its agonist Rosiglitazone or adenoviral vectors that could mediate overexpression of PPARγ. PPARγ activity is suppressed by application of its antagonist GW9662 or shRNA. Egr-1 expression is down-regulated by using the gene specific shRNA.Measures and Main ResultsWe find that during IgG-IC-induced acute lung inflammation, PPARγ expression at both RNA and protein levels is repressed, which is consistent with the results obtained from macrophages treated with IgG-IC. Furthermore, both in vivo and in vitro data show that PPARγ activation reduces IgG-IC-mediated pro-inflammatory mediators’ production, thereby alleviating lung injury. In terms of mechanism, we observe that the generation of Egr-1 elicited by IgG-IC is inhibited by PPARγ. As an important transcription factor, Egr-1 transcription is substantially increased by IgG-IC in both in vivo and in vitro studies, leading to augmented protein expression, thus amplifying IgG-IC-triggered expressions of inflammatory factors via association with their promoters.ConclusionDuring IgG-IC-stimulated acute lung inflammation, PPARγ activation can relieve the inflammatory response by suppressing the expression of its downstream target Egr-1 that directly binds to the promoter regions of several inflammation-associated genes. Therefore, regulation of PPARγ-Egr-1-pro-inflammatory mediators axis by PPARγ agonist Rosiglitazone may represent a novel strategy for blockade of acute lung injury.


1984 ◽  
Vol 4 (2) ◽  
pp. 232-239
Author(s):  
F Van Roy ◽  
L Fransen ◽  
W Fiers

Immune complex kinase assays in the simian virus 40 system were performed by incubation of immunoprecipitates containing tumor antigens with [gamma-32P]ATP, followed by analysis of any phosphoacceptor proteins. These assays yielded mainly the viral large T-antigen and, in particular, the associated cellular p53 as endogenous substrates. The nature of these substrates was confirmed by proteolysis techniques. Under specific conditions, casein could be used as an exogenous substrate as well. The kinase reactions showed preference for ATP and MgCl2 instead of GTP or MnCl2. Both phosphoserine and phosphothreonine, but in no case phosphotyrosine, were detected after an immune complex kinase reaction. Apparently, several in vivo phosphorylation sites were recognized in vitro in both large T-antigen and p53, but the presence of some artifactual sites could not be completely excluded. Although contaminating kinases were detectable in the immune complexes, at least the p53 molecules were phosphorylated in vitro in a more specific way. This followed from several characteristics of the immune complex kinase reactions and especially from the strong inhibition of p53 phosphorylation by two anti-large-T monoclonal antibodies. It was shown that large T-antigen showed associated kinase activity, although none of our results could unambiguously demonstrate an intrinsic kinase activity of this protein. Finally, anti-p53 monoclonal antibodies only slightly affected in vitro phosphorylation reactions, whereas a p53 molecule from a simian virus 40-free, chemically transformed human cell line was not phosphorylated in vitro under any condition tested. Thus, it is highly unlikely that the p53 molecule per se carries intrinsic or even associated kinase activities.


Author(s):  
Boyang Xu ◽  
Li Zhu ◽  
Qingsong Wang ◽  
Yanfeng Zhao ◽  
Meng Jia ◽  
...  

Abstract Background IgA nephropathy (IgAN) is characterized by predominant IgA deposition in the glomerular mesangium. Previous studies proved that renal-deposited IgA in IgAN came from circulating IgA1-containing complexes (CICs). Methods To explore the composition of CICs in IgAN, we isolated CICs from IgAN patients and healthy controls, and then quantitatively analyzed them by mass spectrometry. Meanwhile, the isolated CICs were used to treat human mesangial cells to monitor mesangial cell injury. Taken together the proteins content and injury effects, the key constituent in CICs was identified. Then, the circulating levels of identified key constituent-IgA complex were detected in an independent population by an in-house-developed ELISA. Results By comparing the proteins of CICs between IgAN patients and controls, we found that 14 proteins showed significantly different levels. Among them, alpha-1-microglobulin content in CICs was associated with not only in vitro mesangial cell proliferation and MCP-1 secretion but also in vivo eGFR levels and tubulointerstitial lesions in IgAN patients. Moreover, we found alpha-1-microglobulin was prone to bind aberrant glycosylated IgA1. Additionally, an elevated circulating IgA-alpha-1-microglobulin complex levels were detected in an independent IgAN population, and IgA-alpha-1-microglobulin complex levels were correlated with hypertension, eGFR levels and Oxford-T scores in these IgAN patients. Conclusions Our results suggest that the IgA-alpha-1-microglobulin complex is an important constituent in CICs, and that circulating IgA-alpha-1-microglobulin complex detection might serve as a potential noninvasive biomarker detection method for IgAN.


1987 ◽  
Author(s):  
J Bussel

ITP is an autoantibody-mediated disease which would logically be treated by decreasing the level of autoantibody. However, the most exciting developments in understanding the pathophysiology of the thrombocytopenia and its treatment involve a better understanding of the MPS FcR system and ways in which it can be modulated. This work has focussed on phagocytic paralysis or FcR blockade (FcRBl): the slowing of destruction of antibody-coated platelets despite the persistent presence of antibody on the surface of the platelet.Several areas have been explored in learning about the MPS system. Investigation by Kurlander among others have revealed that at least 2 FcR's exist on mononuclear phagocytes: one with high and one with low affinity for monomeric IgG. Study of the high affinity FcR expressed by circulating monocytes, by Schreiber among others, has explored the effect of Danazol to decrease the expression of this FcR. The clinical relevance of this receptor is uncertain however because it is saturated in vitro by physiologic concentrations of IgG. Unkeless defined the properties of the low affinity "immune complex" FcR, expressed on macrophages and neutrophils, via monoclonal antibody 3G8 (see below) which blocks ligand binding to this FcR. The exact roles of these two, and possibly more, FcR's are being explored. Another still unsolved controversy involves whether the interaction Fc portions of antibodies coating particles with FcR's is mediated by a conformational change of the Fc portion or by a multipoint attachment of several Fc parts.Studies by Mollison in the 60's demonstrated that the MPS had a limited capacity for removal of antibody-coated (red) cells. Shulman pursued MPS modulation by exploring the inhibition of thrombocytopenia caused by infusion of ITP plasma into normals. Kelton demonstrated that "compensated" ITP may be caused by a decreased clearance of antibody-coated cells and that the rate of clearance of antibody-coated cells may be correlated with rate of clearance of antibody-coated cells may be correlated with the intrinsic levels of IgG. Stossel investigated FcRBl as a mechanism of effect of corticosteroids and related it clinically. Subsequently intravenous gammaglobulin (IVGG) was introducedas a treatment of ITP and Fehr et al first demonstrated FcRBl as the mechanism of effect of IVGG. Exploration of the mechanism of the FcRBl caused by IVGGled Salama and Mueller-Eckhardt to demonstrate the therapeutic effect of I anti-D, which apparentlycoats RBC with antibody and causes their destruction atthe coats RBC with antibody and causes their destruction at the expense of antibody-coated platelets. A similar degree of FcRBl has been shown for aldometrelated to the development of antibody on RBC.Our studies, including Drs. Clarkson, Kimberly, Nachman, and Unkeless, have focussed on the role of the low affinity or "Immune complex" FcR by using monoclonal antibody 3G8 in vivo. An infusion of 1 mg/kg of 3G8 in chimpanzees caused a reproducible FcRBl demonstrable by a slowing of the destruction of antibody-coated RBC for > 10 days (JEM, 1986). Less effect of 3G8 to inhibit CIC removal was seen using DNA-anti-DNA as the immune complex. In view of the wel1-documented effects of IVGG infusion to create FcRBl, we infused 3G8 into 6 adults with refractory ITP (NEJM, 1986). Specifically these patients were refractory to all forms of conventional therapy including splenectomy, steroids, vinca alkaloid infusion, immunosuppressives and danazol . 3 of the 6 patients had peak platelet responses to >80,000/ul. The other 3 had short-lived platelet increases from 10 to 30,000/ul. These responses confirmed the effect of FcRBl, specifically of the low affinity FcR, to underlie a dramatic platelet increase in therapy of ITP. Surprisingly 3 of the patients had apparent longterm effects of this therapy demonstrable in 2 cases as a maintenance of the platelet count >20,0C0/ul without any further therapy and in 1 case as a clearly enhanced responsiveness to other therapies following 3G8 infusion. Since Natural Killer activity was (transiently) ablated by 3G8 infusion, we speculate that an alternation of regulation of (auto) antibody production by NK cells may be responsible for this effect and that FcR interactions include regulatory roles in addition to their primary function of removal of CIC.


1982 ◽  
Vol 155 (5) ◽  
pp. 1385-1399 ◽  
Author(s):  
M Goldman ◽  
L M Rose ◽  
A Hochmann ◽  
P H Lambert

We investigated the possible role of idiotypic interactions in the pathogenesis of the glomerular lesions observed in mice undergoing polyclonal B cell activation. BALB/c mice were studied for the presence of renal deposits of T15 idiotype-anti-T15 idiotype-immune complexes (IC) after injection of bacterial lipopolysaccharides (LPS). The T15 idiotype is the major idiotype of BALB/c mice anti-phosphorylcholine (PC) antibodies, which are cross-reactive with the idiotype of the TEPC-15 myeloma protein. This model was used because T15 idiotype-anti-T15 idiotype IC have been detected in the circulation of BALB/c mice after polyclonal B cell activation. First, an idiotype-specific immunofluorescence technique allowed us to detect T15 idiotype-bearing immunoglobulins in glomeruli from day 6 to day 28 after LPS injection. Second, fluorescein isothiocyanate-conjugated TEPC-15 myeloma protein was found to localize in the glomeruli after in vivo injection 18 d after LPS administration. This renal localization was shown to be idiotype-specific and could be quantified in a trace-labeling experiment. Third, kidney-deposited immunoglobulins of mice injected with LPS were eluted, radiolabeled, and analyzed by radioimmunoassay. Both T15 idiotype-bearing immunoglobulins and anti-T15 idiotype antibodies were detected in the eluates, providing further evidence for a renal deposition of T15 idiotype-anti-T15 idiotype IC. Polyclonal B cell activation is likely to result in a simultaneous triggering of many idiotypic clones and of corresponding anti-idiotypic clones represented in the B cell repertoire. This could lead to the formation of a variety of idiotype-anti-idiotype IC that could participate in the development of glomerular lesions.


1997 ◽  
Vol 186 (11) ◽  
pp. 1853-1863 ◽  
Author(s):  
Tao Tang ◽  
Alexander Rosenkranz ◽  
Karel J.M. Assmann ◽  
Michael J. Goodman ◽  
Jose-Carlos Gutierrez-Ramos ◽  
...  

Mac-1 (αmβ2), a leukocyte adhesion receptor, has been shown in vitro to functionally interact with Fcγ receptors to facilitate immune complex (IC)–stimulated polymorphonuclear neutrophil (PMN) functions. To investigate the relevance of Mac-1–FcγR interactions in IC-mediated injury in vivo, we induced a model of Fc-dependent anti–glomerular basement membrane (GBM) nephritis in wild-type and Mac-1–deficient mice by the intravenous injection of anti-GBM antibody. The initial glomerular PMN accumulation was equivalent in Mac-1 null and wild-type mice, but thereafter increased in wild-type and decreased in mutant mice. The absence of Mac-1 interactions with obvious ligands, intercellular adhesion molecule 1 (ICAM-1), and C3 complement, is not responsible for the decrease in neutrophil accumulation in Mac-1– deficient mice since glomerular PMN accumulation in mice deficient in these ligands was comparable to those in wild-type mice. In vitro studies showed that spreading of Mac-1–null PMNs to IC-coated dishes was equivalent to that of wild-type PMNs at 5–12 min but was markedly reduced thereafter, and was associated with an inability of mutant neutrophils to redistribute filamentous actin. This suggests that in vivo, Mac-1 is not required for the initiation of Fc-mediated PMN recruitment but that Mac-1–FcγR interactions are required for filamentous actin reorganization leading to sustained PMN adhesion, and this represents the first demonstration of the relevance of Mac-1–FcγR interactions in vivo. PMN-dependent proteinuria, maximal in wild-type mice at 8 h, was absent in Mac-1 mutant mice at all time points. Complement C3–deficient mice also had significantly decreased proteinuria compared to wild-type mice. Since Mac-1 on PMNs is the principal ligand for ic3b, an absence of Mac-1 interaction with C3 probably contributed to the abrogation of proteinuria in Mac-1–null mice.


Lupus ◽  
1993 ◽  
Vol 2 (1_suppl) ◽  
pp. 261-268 ◽  
Author(s):  
Tatsuo Yamamoto ◽  
Mitsumasa Nagase ◽  
Akira Hishida ◽  
Nishio Honda

The significance of interstitial inflammatory and chronic tubulointerstitial lesions was studied in relation to the severity of glomerular lesions in 62 patients with lupus nephritis and 88 with IgA nephropathy. Severe interstitial inflammatory and chronic tubulointerstitial lesions were found in patients with severe glomerular lesions in both lupus nephritis and IgA nephropathy. In such cases, the serum creatinine levels at biopsy were high and the renal prognosis was poor regardless of the underlying disease (lupus nephritis or IgA nephropathy). No IgA nephropathy patients with nil or mild glomerular lesions had moderate or severe interstitial inflammatory and/or chronic tubulointerstitial lesions. In contrast, predominantly severe interstitial inflammatory lesions were found in 36% of lupus nephritis patients with nil or mild glomerular lesions. The prevalence of interstitial immune complexes deposition was markedly high in those with predominant interstitial inflammatory lesions. However, the severity of chronic tubulointerstitial lesions was mild and renal function did not deteriorate in the mean follow-up periods of 68.6 months. It is suggested that, besides the tubulointerstitial lesions attributable to the severe concomitant glomerular damage, the interstitial deposition of immune complexes per se plays a pathogenic role in the interstitial inflammatory lesions in lupus nephritis. Its prognostic significance, however, was considered to be minor.


Sign in / Sign up

Export Citation Format

Share Document