tubulointerstitial lesions
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 46)

H-INDEX

22
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3060
Author(s):  
Shin-Ruen Yang ◽  
Szu-Chun Hung ◽  
Lichieh Julie Chu ◽  
Kuo-Feng Hua ◽  
Chyou-Wei Wei ◽  
...  

Renal tubulointerstitial lesions (TILs), a common pathologic hallmark of chronic kidney disease that evolves to end-stage renal disease, is characterized by progressive inflammation and pronounced fibrosis of the kidney. However, current therapeutic approaches to treat these lesions remain largely ineffectual. Previously, we demonstrated that elevated IL-36α levels in human renal tissue and urine are implicated in impaired renal function, and IL-36 signaling enhances activation of NLRP3 inflammasome in a mouse model of TILs. Recently, we synthesized NSC828779, a salicylanilide derivative (protected by U.S. patents with US 8975255 B2 and US 9162993 B2), which inhibits activation of NF-κB signaling with high immunomodulatory potency and low IC50, and we hypothesized that it would be a potential drug candidate for renal TILs. The current study validated the therapeutic effects of NSC828779 on TILs using a mouse model of unilateral ureteral obstruction (UUO) and relevant cell models, including renal tubular epithelial cells under mechanically induced constant pressure. Treatment with NSC828779 improved renal lesions, as demonstrated by dramatically reduced severity of renal inflammation and fibrosis and decreased urinary cytokine levels in UUO mice. This small molecule specifically inhibits the IL-36α/NLRP3 inflammasome pathway. Based on these results, the beneficial outcome represents synergistic suppression of both the IL-36α-activated MAPK/NLRP3 inflammasome and STAT3- and Smad2/3-dependent fibrogenic signaling. NSC828779 appears justified as a new drug candidate to treat renal progressive inflammation and fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Samy Hakroush ◽  
Désirée Tampe ◽  
Philipp Ströbel ◽  
Peter Korsten ◽  
Björn Tampe

BackgroundAcute kidney injury (AKI) is a common and severe complication of anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV), potentially leading to chronic kidney disease (CKD), end-stage renal disease (ESRD), or death. Pathogenic ANCAs, in particular proteinase 3 (PR3) and myeloperoxidase (MPO), trigger a deleterious immune response with intrarenal immune cell infiltration resulting in a pauci-immune necrotizing and crescentic glomerulonephritis (GN). However, a systematic analysis of intrarenal immune cell subtypes concerning neutrophils, eosinophils, plasma cells, and mononuclear cell infiltrates (macrophages, lymphocytes) in ANCA GN remains elusive. Therefore, we aimed to compare distinct immune cell infiltrates in association with clinicopathological findings in ANCA GN.MethodsA total of 53 kidney biopsies with ANCA GN at the University Medical Center Göttingen were retrospectively analyzed. Histological infiltrates of neutrophils, eosinophils, plasma cells, and mononucleated cells (macrophages, lymphocytes) were quantified as a fraction of the total area of inflammation.ResultsNeutrophilic infiltrates were associated with glomerular necrosis and severe kidney injury in ANCA GN. Among tubulointerstitial lesions, intrarenal neutrophils correlated with interstitial inflammation, tubulitis, and inflammation in areas of interstitial fibrosis/tubular atrophy (IFTA), representing active inflammatory lesions. Concerning eosinophils, infiltrates were associated with severe kidney injury, interstitial inflammation, and cellular casts independent of glomerular lesions, implicating a distinct role in inflammation and damage in ANCA GN. Plasma cell infiltrates correlated with tubulitis and interstitial fibrosis and were associated with renal replacement therapy during the short-term disease course. Finally, mononuclear cell infiltrates correlated with severe kidney injury and active histopathological lesions (glomerular crescents, interstitial inflammation, tubulitis, inflammation, and tubulitis in areas of IFTA) besides chronic lesions (interstitial fibrosis and tubular atrophy) in ANCA GN. Interestingly, intrarenal subtypes of immune cell infiltrates differed in MPO-ANCA versus PR3-ANCA GN and were associated with distinct glomerular and tubulointerstitial lesions, implicating different pathogenic mechanisms of kidney injury in ANCA subtypes.ConclusionOur observations imply distinct pathomechanisms contributing to inflammation and renal injury in MPO vs. PR3-associated ANCA GN and potentially contribute to new therapeutic targets in specific ANCA subtypes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Miho Shimizu ◽  
Kengo Furuichi ◽  
Shinji Kitajima ◽  
Tadashi Toyama ◽  
Megumi Oshima ◽  
...  

Abstract Background Progression of renal anemia has been shown to be associated with advanced renal tubulointerstitial lesions. This retrospective study investigated the impact of lower hemoglobin (Hb) levels and renal interstitial fibrosis and tubular atrophy (IFTA) on long-term outcomes in type 2 diabetes with biopsy-proven diabetic nephropathy. Methods A total of 233 patients were enrolled. The severity of IFTA was scored according to the classification by the Renal Pathology Society. Patients were stratified according to baseline Hb tertiles by IFTA status. The outcomes were the first occurrence of renal events (requirement for dialysis or 50 % decline in estimated glomerular filtration rate from baseline) and all-cause mortality. Results At baseline, 151 patients had severe IFTA. There were no patients who have been received erythropoiesis-stimulating agents at the time of renal biopsy. The severity of IFTA was the independent pathological factor of lower Hb levels. During the mean follow-up period of 8.6 years (maximum, 32.4 years), 119 renal events and 42 deaths were observed. Compared with the combined influence of the highest tertile of Hb and mild IFTA, the risks of renal events were higher for the middle tertile and for the lowest tertile of Hb in severe IFTA, whereas the risk of renal events was higher for the lowest tertile of Hb in mild IFTA. The risk of mortality was higher for the lowest tertile of Hb only in severe IFTA. There were significant interactions of tertile of Hb and IFTA in renal events and mortality. Conclusions Impacts of lower Hb levels on long-term outcomes of diabetic nephropathy were greater in severe IFTA than in mild IFTA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Désirée Tampe ◽  
Peter Korsten ◽  
Philipp Ströbel ◽  
Samy Hakroush ◽  
Björn Tampe

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a small vessel vasculitis affecting multiple organ systems, including the kidney. Besides investigations focusing on renal outcomes, sex differences associated with distinct clinical and histopathological findings in ANCA glomerulonephritis (GN) have not been systematically investigated. Therefore, we here aimed to systematically analyze sex differences in patients with AAV and biopsy-proven ANCA GN. We provide a comprehensive analysis of 53 kidney biopsies with ANCA GN retrospectively included between 2015 and 2020 and identified specific sex differences in ANCA GN concerning laboratory parameters and systematic scoring of renal histopathology glomerular and tubulointerstitial lesions, and extrarenal manifestations of AAV. We did not observe any correlation between sex and short-term clinical AAV course or disease severity by comparing general AAV parameters. AAV manifestations in females occurred at an older age with more joint involvement. Regarding histopathological findings, we, again, observed no sex difference among ANCA GN classification, but a significant correlation between females and distinct histopathological findings with less tubulointerstitial inflammation and vasculitis of peritubular capillaries. Finally, we here identified fewer associations between clusters of clinical, laboratory parameters, and histopathological findings in females as compared to males. These findings are of great relevance and further improve our understanding of sex differences in the pathogenesis of ANCA GN. While future studies about specific sex differences and conclusions in these clusters are crucial, our observations further support that sex differences are relevant, affect distinct parameters, and influence clinical, laboratory parameters, and histopathological findings in AAV, particularly ANCA GN.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2014
Author(s):  
Désirée Tampe ◽  
Laura Schridde ◽  
Peter Korsten ◽  
Philipp Ströbel ◽  
Michael Zeisberg ◽  
...  

Kidney fibrosis is a common manifestation and hallmark of a wide variety of chronic kidney disease (CKD) that appears in different morphological patterns, suggesting distinct pathogenic causes. Broad macroscopically visible scars are the sequelae of severe focal injury and complete parenchymal destruction, reflecting a wound healing response as a consequence of infarction. In the kidney, chronic glomerular injury leads to atrophy of the corresponding tubule, degeneration of this specific nephron, and finally interstitial fibrosis/tubular atrophy (IF/TA). Compared to this glomerulus-induced focal replacement scar, diffuse fibrosis independent of tubular atrophy appears to be a different pathogenic process. Kidney fibrosis appears to develop in a compartment-specific manner, but whether focal and diffuse fibrosis has distinct characteristics associated with other glomerular or tubulointerstitial lesions remains elusive. In the present study, we aimed to analyze renal fibrotic patterns related to renal lesions, which directly contribute to renal fibrogenesis, to unravel fibrotic patterns and manifestations upon damage to distinct renal compartments. Patterns of kidney fibrosis were analyzed in experimental models of CKD and various renal pathologies in correlation with histopathological and ultrastructural findings. After the induction of isolated crescentic glomerulonephritis (GN) in nephrotoxic serum-nephritis (NTN), chronic glomerular damage resulted in predominantly focal fibrosis adjacent to atrophic tubules. By contrast, using unilateral ureteral obstruction (UUO) as a model of primary injury to the tubulointerstitial compartment revealed diffuse fibrosis as the predominant pattern of chronic lesions. Finally, folic acid-induced nephropathy (FAN) as a model of primary tubular injury with consecutive tubular atrophy independent of chronic glomerular damage equally induced predominant focal IF/TA. By analyzing several renal pathologies, our data also suggest that focal and diffuse fibrosis appear to contribute as chronic lesions in the majority of human renal disease, mainly being present in antineutrophil cytoplasmic antibody (ANCA)-associated GN, lupus nephritis, and IgA nephropathy (IgAN). Focal IF/TA correlated with glomerular damage and irreversible injury to nephrons, whereas diffuse fibrosis in ANCA GN was associated explicitly with interstitial inflammation independent of glomerular damage and nephron loss. Ultrastructural analysis of focal IF/TA versus diffuse fibrosis revealed distinct matrix compositions, further supported by different collagen signatures in transcriptome datasets. With regard to long-term renal outcome, only the extent of focal IF/TA correlated with the development of end-stage kidney disease (ESKD) in ANCA GN. In contrast, diffuse kidney fibrosis did not associate with the long-term renal outcome. In conclusion, we here provide evidence that a focal pattern of kidney fibrosis seems to be associated with nephron loss and replacement scarring. In contrast, a diffuse pattern of kidney fibrosis appears to result from primary interstitial inflammation and injury.


2021 ◽  
Author(s):  
Liang Wu ◽  
Changjie Liu ◽  
Dong-Yuan Chang ◽  
Rui Zhan ◽  
Mingming Zhao ◽  
...  

Inflammation and abnormal metabolism play important roles in the pathogenesis of diabetic nephropathy (DN). Annexin A1 (ANXA1) contributes to inflammation resolution and improves metabolism. Here, we assess the effects of ANXA1 in diabetic mice and proximal tubular epithelial cells (PTECs) treated with high glucose plus palmitate acid (HGPA), and explore the association of ANXA1 with lipid accumulation in DN patients. It is found that ANXA1 deletion aggravates renal injuries, including albuminuria, mesangial matrix expansion and tubulointerstitial lesions in HFD/STZ-induced diabetic mice. ANXA1 deficiency promotes intra-renal lipid accumulation and drives mitochondrial alterations in kidneys. In addition, Ac2-26, an ANXA1 mimetic peptide, has a therapeutic effect against lipid toxicity in diabetic mice. In HGPA-treated human PTECs, <i>ANXA1</i> silencing causes FPR2/ALX-driven deleterious effects, which suppress phosphorylated Thr<sup>172</sup>AMPK, resulting in decreased PPARα and CPT1b expression and increased HGPA-induced lipid accumulation, apoptosis and elevated expression of pro-inflammatory and pro-fibrotic genes. Last but not least, the extent of lipid accumulation correlates with renal function, and the level of tubulointerstitial ANXA1 expression correlates with ectopic lipid deposition in kidneys of DN patients. These data demonstrate that ANXA1 regulates lipid metabolism of PTECs to ameliorate disease progression, hence it holds great potential as a therapeutic target for DN.


2021 ◽  
Vol 22 (12) ◽  
pp. 6588
Author(s):  
Samy Hakroush ◽  
Désirée Tampe ◽  
Peter Korsten ◽  
Philipp Ströbel ◽  
Björn Tampe

Background: Acute kidney injury (AKI) is a common and severe complication of antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) causing progressive chronic kidney disease (CKD), end-stage renal disease (ESRD) or death. Pathogenic ANCAs, in particular proteinase 3 (PR3) and myeloperoxidase (MPO), trigger a deleterious immune response resulting in pauci-immune necrotizing and crescentic glomerulonephritis (GN), a common manifestation of glomerular injury in AAV. However, there is growing evidence that activation of the complement pathway contributes to the pathogenesis and progression of AAV. We here aimed to compare glomerular and tubulointerstitial lesions in ANCA GN and extrarenal manifestation of AAV in association with levels of circulating complement components C3c and C4. Methods: Plasma levels of C3c and C4 in a total number of 53 kidney biopsies with ANCA GN were retrospectively included between 2015 and 2020. Glomerular and tubulointerstitial lesions were evaluated according to established scoring systems for ANCA GN and analogous to the Banff classification. Results: We here show that circulating levels of C3c and C4 in ANCA GN were comparable to the majority of other renal pathologies. Furthermore, hypocomplementemia was only detectable in a minor subset of ANCA GN and not correlated with renal or extrarenal AAV manifestations. However, low levels of circulating C3c correlated with AKI severity in ANCA GN independent of systemic disease activity or extrarenal AAV manifestation. By systematic scoring of glomerular and tubulointerstitial lesions, we provide evidence that low levels of circulating C3c and C4 correlated with vasculitis manifestations to distinct renal compartments in ANCA GN. Conclusions: We here expand our current knowledge about distinct complement components in association with vasculitis manifestations to different renal compartments in ANCA GN. While low levels of C4 correlated with glomerulitis, our observation that low levels of circulating complement component C3c is associated with interstitial vasculitis manifestation reflected by intimal arteritis implicates that C3c contributes to tubulointerstitial injury in ANCA GN.


2021 ◽  
Author(s):  
Liang Wu ◽  
Changjie Liu ◽  
Dong-Yuan Chang ◽  
Rui Zhan ◽  
Mingming Zhao ◽  
...  

Inflammation and abnormal metabolism play important roles in the pathogenesis of diabetic nephropathy (DN). Annexin A1 (ANXA1) contributes to inflammation resolution and improves metabolism. Here, we assess the effects of ANXA1 in diabetic mice and proximal tubular epithelial cells (PTECs) treated with high glucose plus palmitate acid (HGPA), and explore the association of ANXA1 with lipid accumulation in DN patients. It is found that ANXA1 deletion aggravates renal injuries, including albuminuria, mesangial matrix expansion and tubulointerstitial lesions in HFD/STZ-induced diabetic mice. ANXA1 deficiency promotes intra-renal lipid accumulation and drives mitochondrial alterations in kidneys. In addition, Ac2-26, an ANXA1 mimetic peptide, has a therapeutic effect against lipid toxicity in diabetic mice. In HGPA-treated human PTECs, <i>ANXA1</i> silencing causes FPR2/ALX-driven deleterious effects, which suppress phosphorylated Thr<sup>172</sup>AMPK, resulting in decreased PPARα and CPT1b expression and increased HGPA-induced lipid accumulation, apoptosis and elevated expression of pro-inflammatory and pro-fibrotic genes. Last but not least, the extent of lipid accumulation correlates with renal function, and the level of tubulointerstitial ANXA1 expression correlates with ectopic lipid deposition in kidneys of DN patients. These data demonstrate that ANXA1 regulates lipid metabolism of PTECs to ameliorate disease progression, hence it holds great potential as a therapeutic target for DN.


2021 ◽  
Author(s):  
Liang Wu ◽  
Changjie Liu ◽  
Dong-Yuan Chang ◽  
Rui Zhan ◽  
Mingming Zhao ◽  
...  

Inflammation and abnormal metabolism play important roles in the pathogenesis of diabetic nephropathy (DN). Annexin A1 (ANXA1) contributes to inflammation resolution and improves metabolism. Here, we assess the effects of ANXA1 in diabetic mice and proximal tubular epithelial cells (PTECs) treated with high glucose plus palmitate acid (HGPA), and explore the association of ANXA1 with lipid accumulation in DN patients. It is found that ANXA1 deletion aggravates renal injuries, including albuminuria, mesangial matrix expansion and tubulointerstitial lesions in HFD/STZ-induced diabetic mice. ANXA1 deficiency promotes intra-renal lipid accumulation and drives mitochondrial alterations in kidneys. In addition, Ac2-26, an ANXA1 mimetic peptide, has a therapeutic effect against lipid toxicity in diabetic mice. In HGPA-treated human PTECs, <i>ANXA1</i> silencing causes FPR2/ALX-driven deleterious effects, which suppress phosphorylated Thr<sup>172</sup>AMPK, resulting in decreased PPARα and CPT1b expression and increased HGPA-induced lipid accumulation, apoptosis and elevated expression of pro-inflammatory and pro-fibrotic genes. Last but not least, the extent of lipid accumulation correlates with renal function, and the level of tubulointerstitial ANXA1 expression correlates with ectopic lipid deposition in kidneys of DN patients. These data demonstrate that ANXA1 regulates lipid metabolism of PTECs to ameliorate disease progression, hence it holds great potential as a therapeutic target for DN.


Infections has been known to cause various kidney disorders, either as a result of direct infection of the genitourinary tract by a variety of pathological organisms such as viruses, bacteria, parasites, and fungi; as part of the systemic inflammatory response to overwhelming sepsis; due to infection-related immune dysregulation; or as a ‘para-infectious’ condition. The epidemiology of infection-related kidney disorders varies with socio-economic differences, with parasite and mycobacterial infections occurring in areas of low-resource conditions. Urinary tract infections continue to be a common condition in many countries, with an emergence of antimicrobial resistance being a worrying issue. Blood-borne viruses have been reported to cause glomerular and tubulointerstitial lesions, due to either immune dysregulation or a direct effect of the viruses, and are often seen in areas where the infection is endemic. Genetic and racial predisposition has been reported, and an understanding of the treatment options is important as certain drugs have been known to have deleterious effect on the kidneys.


Sign in / Sign up

Export Citation Format

Share Document