scholarly journals Expression of the thymus leukemia antigen by activated peripheral T lymphocytes.

1983 ◽  
Vol 158 (3) ◽  
pp. 1012-1017 ◽  
Author(s):  
R G Cook ◽  
N F Landolfi

Peripheral T lymphocytes activated in vitro with concanavalin A (Con A) or alloantigens express the thymus leukemia (TL) alloantigen as assessed by staining with the monoclonal antibody TL.m3 and flow cytometric analysis. The determinants detected by TL.m3 on activated cells are encoded within the Tla region and are detected as early as 48 h after activation with Con A. Several long-term cloned cytotoxic T lymphocyte lines were also examined and each expressed TL. By two-dimensional analysis, the TL isolated from activated peripheral cells was indistinguishable from that found on thymocytes and the leukemia cell line ASL-1.

1986 ◽  
Vol 164 (3) ◽  
pp. 962-967 ◽  
Author(s):  
M F Luciani ◽  
J F Brunet ◽  
M Suzan ◽  
F Denizot ◽  
P Golstein

At least some long-term in vitro-cultured cytotoxic T cell clones and uncloned cell populations are able, in the presence of Con A, to lyse other cells, to be lysed by other cells, but not to lyse themselves. This as-yet-unexplained result may have implications as to the mechanism of T cell-mediated cytotoxicity.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 202-207
Author(s):  
BJ Roth ◽  
GW Jr Sledge ◽  
JE Straneva ◽  
J Brandt ◽  
M Goheen ◽  
...  

Megakaryocytes are relatively rare components of human bone marrow, making the study of their maturation difficult. Phorbol esters can act as differentiating agents in a number of cell systems including murine megakaryocytes. We report the effects of phorbol esters on the previously described long-term human megakaryocytic leukemia cell culture, EST-IU. While two nontransforming phorbols fail to affect these cells, the transforming phorbol 12-O-tetradecanoylphorbol-13- acetate (TPA) induces a phenotype with characteristics of more mature megakaryocytes in a dose-related manner. This phenotype includes an increased adherence to untreated plastic or glass, polyploidization, an increase in cell size, and increased expression of both platelet glycoproteins and factor VIII-related antigen. Two-color flow cytometric analysis allowed simultaneous determinations of DNA content and the expression of surface membrane antigens or alpha-granule constituents, providing evidence that nuclear, membrane, and cytoplasmic maturation occur in parallel in this cellular system. TPA- induced maturation of EST-IU cells provides an important new cellular model for the further study of human megakaryocyte development.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2746-2746
Author(s):  
Koichiro Suemori ◽  
Hiroshi Fujiwara ◽  
Toshiki Ochi ◽  
Masaki Yasukawa

Abstract [Purpose & background] CML66 is a newly identified cancer-testis antigen by SEREX method in post-transplant CML patient who had a second remission by DLI for relapse. Thus CML66 is initially considered to be implicated in graft-versus-leukemia (GvL) effect against CML, while its’ physiological function remains unknown. The identification by SEREX means its’ immunogenicity to produce antibody, however the T-cell response specific for CML66, particularly its’ ability to generate cytotoxic T-lymphocyte (CTL) against leukemia still remains to be verified. Thus we explored a CTL-epitope of CML66 to induce epitope-specific CTL which can kill human leukemia cells, because of the exploration of its’ clinical applicability as an anticancer vaccine for the immunotherapy. [Methods] At first, we synthesized a variety of CML66-derived 9 aminoacid peptides (9 mer) that had computedly-predicted high binding affinity to HLA-A*2402 molecule. CD8+ T lymphocytes from an HLA-A*2402+healthy donor were co-cultured with autologous monocyte-derived mature dendritic cells (mDCs). CD8+T lymphocytes were repeatedly stimulated with peptide-loaded mDCs. Thereafter, the target epitope-specificity of growing cells was examined by a standard 51Cr-release assay. Additionally, the blocking tests by using anti-HLA class I and anti-class II monoclonal antibody (mo.ab.) were conducted to confirm its’ HLA-A*2402-restricted fashion. Next, CML66 mRNA expression level of target cells including myeloid leukemia cell line cells and primary leukemia cells was examined by real-time semi-quantitative PCR (RQ-PCR). The relative expression level of CML66 mRNA was determined by comparative Ct method. [Result] We identified two CML66-derived 9 mer epitopes with high binding affinity to HLA-A*2402 measured by using HLA-A*2402 gene transfected T2 (T2-A24) cell. One of 2 epitopes, the epitope of CML66; aa70–78: WIQDSVYYI generated the epitope-specific CTL, in vitro, and those CTL exerted anti-leukemia activity against human myeloid leukemia cell line cells in an HLA-A*2402-restricted fashion, but not any cytotoxicity against normal cells. Furthermore, the HLA-A*2402 restriction was confirmed by blocking test by HLA-class I and II mo.ab. Next CML66 mRNA expression level was revealed high in myeloid leukemia cell line cells but low in normal cells, which were compared to that of K562 cell line cell. In primay leukemia cells, acute myelogenous leukemia(AML) cells and acute lymphoblastic leukemia(ALL) cells showed the high expression level of CML66 mRNA. Regarding to the FAB classification of AML, the expression level of CML66 mRNA tended to be higher in subsets ranging from M1 to M4, particularly M2 cells. Even by small number, it was of interest that the expression level of CML66 mRNA in primary chronic myelogenous leukemia (CML) cells was high in cells from blastic phase, but low in cells from chronic phase. This finding may suggest the correlation between CML66 and growth activity of tumor cells. [Conclusion] We identified the novel HLA-A*2402 restricted CTL-epitope derived from CML66; aa70–78: WIQDSVYYI, which may be a promising and secure target for immunotherapy against acute leukemias and aggressive CML.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 202-207 ◽  
Author(s):  
BJ Roth ◽  
GW Jr Sledge ◽  
JE Straneva ◽  
J Brandt ◽  
M Goheen ◽  
...  

Abstract Megakaryocytes are relatively rare components of human bone marrow, making the study of their maturation difficult. Phorbol esters can act as differentiating agents in a number of cell systems including murine megakaryocytes. We report the effects of phorbol esters on the previously described long-term human megakaryocytic leukemia cell culture, EST-IU. While two nontransforming phorbols fail to affect these cells, the transforming phorbol 12-O-tetradecanoylphorbol-13- acetate (TPA) induces a phenotype with characteristics of more mature megakaryocytes in a dose-related manner. This phenotype includes an increased adherence to untreated plastic or glass, polyploidization, an increase in cell size, and increased expression of both platelet glycoproteins and factor VIII-related antigen. Two-color flow cytometric analysis allowed simultaneous determinations of DNA content and the expression of surface membrane antigens or alpha-granule constituents, providing evidence that nuclear, membrane, and cytoplasmic maturation occur in parallel in this cellular system. TPA- induced maturation of EST-IU cells provides an important new cellular model for the further study of human megakaryocyte development.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2185-2185
Author(s):  
Ute Brassat ◽  
Stefan Balabanov ◽  
Ulrike Hartmann ◽  
Daniel Rössler ◽  
Kerstin Borgmann ◽  
...  

Abstract In normal somatic cells telomeres shorten with each cell division because of the end-replication problem. The ribonucleoprotein enzyme telomerase is able to prevent replicative telomere shortening and to maintain or elongate telomere length. In 90 % of tumour cells the enzyme telomerase is found to be upregulated. Chronic myeloid leukemia is a disorder characterized by a reciprocal translocation between Chromosome 9 and 22, leading to the so called Philadelphia chromosome harbouring the BCR-ABL translocation. BCR-ABL positive leukemic stem cells are characterized by increased turnover leading to accelerated telomere shortening as opposed to their normal counterparts. It is unclear to date whether accelerated telomere shortening in Bcr-Abl-positive cells is linked to genetic instability eventually leading to the acquisition of secondary clonal events that might propagate acceleration of the disease to blast crisis. Therefore we aimed to characterize Bcr-Abl positive chronic myeloid leukemia cell line K562 with or without inhibition of telomerase activity under long-term culture conditions. K652 cells were expanded for 400 populations doublings (PD) with or without treatment with the small molecule telomerase inhibitor BIBR1532 in vitro. While telomeres in untreated control cells remained relatively constant, telomeres in BIBR1532 treated cells underwent replicative shortening from 10 kb to 3 kb (as measured by flow FISH), reflecting a rate of 22 base pairs (bp) lost per PD. No difference in growth kinetics were observed until that stage. We next characterized treated K562 with short telomeres (K562-S) in contrast to control cells with long telomeres (K562-L) for the expression of telomere and telomerase-binding proteins. No difference in mRNA expression for any of the candidate proteins were observed by RT-PCR. Comparative analysis of global protein expression was performed by 2D gel electrophoresis. Taken together, 23 protein spots were found to be differentially expressed between treated and untreated cells, fifteen of which were already identified by mass spectometry. Additionally, we analysed the cells for the acquisition of additional cytogenetic abnormalities by M-FISH. Interestingly, in this ongoing study, we consistently found acquisition of genetic material on chromosome 7 in treated as compared to untreated cells. To study radiation sensitivity under BIBR1532 treatment, K562 cells were exposed to increasing doses of irradiation. Interestingly, despite of a dose-dependent increase in the fraction of apoptotic cells in the pre-treated as opposed to control cells, no accumulation in the number of double strand breaks or lethal aberrations were detected. Interestingly, telomere shortening after telomerase inhibition translated to increased sensitivity to Imatinib (IC50 0.6 μM vs. IC50 1.2 μM). Taken together, telomerase inhibition represent a attractive new therapeutic strategy in Bcr-Abl positive leukemias. However, careful evaluation of side effects need to be studied on the proteomics and cytogenetic level.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4359-4359
Author(s):  
Sophia R. Balderman ◽  
Benjamin J Frisch ◽  
Mark W LaMere ◽  
Alexandra N Goodman ◽  
Michael W. Becker ◽  
...  

Abstract In vitro data provide evidence of an altered bone marrow microenvironment (BMME) in the myelodysplastic syndromes (MDS). To assess the role of the BMME in MDS in vivo, we used a well-established transgenic murine model with expression of the translocation product Nup98-HOXD13 (NHD13) in hematopoietic cells that leads to development of an MDS phenotype, fully penetrant by 5 months of age. In order to assess whether the BMME contributes to diminished hematopoiesis as a feature of MDS, we transplanted marrow from 5-month-old NHD13 mice and normal competitor marrow into irradiated NHD13 mice and their wild type (WT) littermates. Serial analysis of peripheral blood (PB) indicated engraftment of NHD13 marrow was improved in WT recipients relative to NHD13 recipients (2-way ANOVA, WT vs. NHD13: p<0.0001). Flow cytometric analysis of marrow harvested at 16 weeks post-transplant revealed increased NHD13 donor contribution to the hematopoietic stem and progenitor cell (HSPC) pool in WT relative to NHD13 recipients (28.2 ± 4.3 vs. 2.4 ± 0.5 % of total Lineage-, cKit+, Sca1+ (LSK) cells, p<0.01). Surprisingly, leukopoiesis was improved after transplantation of NHD13 marrow into WT as compared to NHD13 recipients (2-way ANOVA, WT vs. NHD13: p<0.01). These data establish that the MDS BMME interferes with the ability of MDS HSPCs to function similarly to normal HSPCs. After the identification of a microenvironmental defect in adult NHD13 mice, we further investigated the NHD13 BMME support for hematopoietic progenitors. By flow cytometric analysis, there were no differences in marrow multipotent progenitors (MPPs) and long term hematopoietic stem cells (LT-HSCs) from NHD13 mice vs. WT littermates at 3 weeks of age. However, in adults there was a progressively severe decline in the NHD13 HSPC pool. HSPCs were not diminished in the spleens of NHD13 mice, suggesting a specific BMME defect. The decrease in phenotypic HSPCs in NHD13 mice was confirmed functionally by competitive repopulation assays using NHD13 or WT donor marrow transplanted into irradiated WT recipients. NHD13-derived PB cells demonstrated marked myeloid skewing relative to WT-derived cells, indicative of a differentiation defect in NHD13-associated hematopoiesis. At 16 weeks post-transplant, recipient marrow was assayed for relative NHD13 and WT donor contributions to the HSPC pool. Consistent with the decreased NHD13 donor contribution to PB counts, NHD13 donor contribution to the HSPC pool in the marrow was diminished (59.4 ± 8.7 vs. 15.5 ± 5.6, % WT donor vs. NHD13 donor contribution to total LSK cells, p<0.001). Despite robust engraftment of WT competitor marrow, cytopenias and macrocytosis were observed in the recipients of NHD13 marrow, suggesting a bystander effect by the NHD13 clone on the function of the normal competitor marrow. To determine NHD13 long-term engraftment function, secondary transplantation of marrow harvested from the primary recipients of NHD13 and WT donors was performed using WT recipients. Serial PB flow cytometric data demonstrated improved overall engraftment of the NHD13 relative to WT donor marrow with persistent and even more marked myeloid skewing of NHD13 donor derived blood cells than was seen in the primary transplant. Consistent with PB data, at 16 weeks post-transplant, the contribution of NHD13 and WT donors to the HSPC pool was similar. Improved NHD13 HSPC number and function in the secondary recipients may be related to BMME rejuvenation through serial passage into a WT BMME. Our data indicate that in this model (1) MDS hematopoietic function is improved in a normal compared to MDS microenvironment (2) the HSPC pool is defective and (3) there is suppression of non-clonal hematopoiesis via a bystander effect, possibly mediated by the MDS BMME. In aggregate our data demonstrate a contributory role of the BMME to ineffective hematopoiesis in MDS, and support a therapeutic strategy whereby manipulation of the MDS microenvironment may improve hematopoietic function. Disclosures Calvi: Fate Therapeutics: Patents & Royalties.


Blood ◽  
1994 ◽  
Vol 84 (11) ◽  
pp. 3925-3928 ◽  
Author(s):  
H Nakakuma ◽  
S Nagakura ◽  
T Kawaguchi ◽  
N Iwamoto ◽  
M Hidaka ◽  
...  

Long-term clinical remission of more than 10 years is rarely seen in paroxysmal nocturnal hemoglobinuria (PNH). Affected blood cells in PNH lack glycosylphosphatidylinositol (GPI)-anchored membrane proteins such as decay-accelerating factor (DAF) and CD59. We performed a flow cytometric analysis of circulating blood cells obtained from two patients with PNH who had been in clinical remission for more than 10 and 25 years, respectively. Affected cells with the PNH phenotype were demonstrated only among T-lymphocytes. Persistent affected T cells were negative for the CD52 protein only, this protein being a GPI-anchored lymphocyte marker without complement regulatory activity. The persistence of the affected T cells may be explained either by an inherently long life span after the disappearance of the PNH stem cell or by insidious production at a subclinical level by affected stem cell. In either event, detection of affected T cells, especially CD52- negative T cells, may be useful for the evaluation of long-term clinical remission in PNH.


Vaccines ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 2 ◽  
Author(s):  
Eranga Abeyratne ◽  
Joseph Freitas ◽  
Ali Zaid ◽  
Suresh Mahalingam ◽  
Adam Taylor

Our previous investigation of the nucleolar localisation sequence (NoLS) of chikungunya virus (CHIKV) capsid protein demonstrated the role of capsid in CHIKV virulence. Mutating the NoLS of capsid in CHIKV led to the development of a unique live-attenuated CHIKV vaccine candidate, termed CHIKV-NoLS. CHIKV-NoLS-immunised mice developed long-term immunity from CHIKV infection after a single dose. To further evaluate CHIKV-NoLS attenuation and suitability as a vaccine, we examined the footpad of inoculated mice for underlying CHIKV-NoLS-induced immunopathology by histological and flow cytometric analysis. In comparison to CHIKV-WT-infected mice, CHIKV-NoLS-inoculated mice exhibited minimal inflammation and tissue damage. To examine the stability of attenuation, the plaque phenotype and replication kinetics of CHIKV-NoLS were determined following extended in vitro passage. The average plaque size of CHIKV-NoLS remained notably smaller than CHIKV-WT after extended passage and attenuated replication was maintained. To examine thermostability, CHIKV-NoLS was stored at 21 °C, 4 °C, −20 °C and −80 °C and infectious CHIKV-NoLS quantified up to 84 days. The infectious titre of CHIKV-NoLS remains stable after 56 days when stored at either −20 °C or −80 °C. Interestingly, unlike CHIKV-WT, the infectious titre of CHIKV-NoLS is not sensitive to freeze thaw cycles. These data further demonstrate preclinical safety and stability of CHIKV-NoLS.


1995 ◽  
Vol 182 (5) ◽  
pp. 1597-1601 ◽  
Author(s):  
B Verhoven ◽  
R A Schlegel ◽  
P Williamson

The appearance of phosphatidylserine (PS) on the cell surface during apoptosis in thymocytes and cytotoxic T lymphocyte cell lines provokes PS-dependent recognition by activated macrophages. Flow cytometric analysis of transbilayer lipid movements in T lymphocytes undergoing apoptosis reveals that downregulation of the adenosine triphosphate-dependent amino-phospholipid translocase and activation of a nonspecific lipid scramblase are responsible for PS reaching the surface from its intracellular location. Both mechanisms are expressed at the same time, and precede DNA degradation, zeiosis, and cell lysis in the apoptotic pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hao Kang ◽  
Yunbo Wei ◽  
Ming Liu ◽  
Di Yu ◽  
Yong Tao

Abstract Background The purpose of this study is to investigate the aqueous humor (AH) T lymphocyte subsets and cytokines of acute retinal necrosis (ARN) to elucidate the immunologic inflammatory features of this disorder. Methods Three patients with ARN infected with varicella zoster virus (VZV) who underwent multiple intravitreal injections of ganciclovir were enrolled in this study. The control group consisted of four non-infectious patients with acute anterior uveitis (AAU). Flow cytometric analysis was performed on the lymphocyte subsets from the AH and peripheral blood (PB) samples during the active phase of intraocular inflammation. Five inflammatory cytokines were measured in each AH sample and various clinical characteristics were also assessed. Results VZV deoxyribonucleic acid (DNA) was detected by real-time polymerase chain reaction (PCR) in AH from all the ARN patients, who showed higher CD8+ T lymphocytes population in AH than the AAU patients (p = 0.006). CD4/CD8 ratios of T lymphocytes and the percentage of CD8 + CD25+ T lymphocytes in AH were significantly lower in ARN than in AAU (p = 0.006; p = 0.012). In the ARN patients, the percentages of CD4+ and CD8+ T lymphocytes in AH were higher than those found in PB. The percentage of CD4 + CD25+ T lymphocytes in AH was significantly higher than the proportion in PB in the AAU patients (p = 0.001). Immunoregulatory cytokine Interleukin-10 in AH was significantly elevated in the ARN patients in comparison with the case of the AAU patients (p = 0.036). In ARN, the copy number of VZV DNA in AH positively correlated with the percentage of CD8+ T lymphocytes in AH and negatively correlated with the CD4/CD8 ratio in AH during the course of disease treatment (p = 0.009, r = 0.92; p = 0.039, r = − 0.834). Conclusion The ARN patients caused by VZV had different intraocular T lymphocyte subsets and cytokines profile than those of the non-infectious patients. High percentages of CD8+ T lymphocytes and low CD4/CD8 T cell ratios may be a potential biomarker for diagnosis of viral-infectious uveitis. T lymphocytes examination at the inflammatory sites has the potential to become a useful research tool for differentiating viral and non-viral uveitis.


Sign in / Sign up

Export Citation Format

Share Document