scholarly journals An antigen-specific signal is required for the activation of second-order suppressor T cells in the regulation of delayed-type hypersensitivity to 2,4,6-trinitrobenzene sulfonic acid.

1983 ◽  
Vol 158 (3) ◽  
pp. 932-945 ◽  
Author(s):  
M Tsurufuji ◽  
B Benacerraf ◽  
M S Sy

Suppressor T cells (Ts-1) induced with trinitrophenyl (TNP)-conjugated syngeneic spleen cells (TNP-SC) can be enriched on antigen-coated plates and are afferent suppressors. In addition, these suppressor cells produced soluble suppressor factors (TsF) that were active in vivo. Therefore, the Ts-1 cells in the TNP system are very similar to the Ts-1 cells in other systems we have studied earlier. Further characterization of these TsF-1 revealed that TsF-1 obtained from TNP-SC-induced Ts-1 is major histocompatibility complex restricted in its activity. Injection of TNP-specific TsF-1 into naive mice did not induce Ts-2 unless additional corresponding antigen was provided. Moreover, the Ts-2 cells induced by administration of both TsF-1 and trinitrobenzene sulfonic acid were antigen specific rather than antiidiotypic.

1979 ◽  
Vol 149 (6) ◽  
pp. 1371-1378 ◽  
Author(s):  
B S Kim

Normal BALB/c spleen cells are unresponsive in vitro to the phosphorylcholine (PC) determinant in the presence of anti-idiotype antibodies specific for the TEPC-15 myeloma protein (T15) which carries an idiotypic determinant indistinguishable from that of most anti-PC antibodies in BALB/c mice. The possibility that idiotype-specific suppressor cells may be generated during the culture period was examined by coculturing the cells with untreated syngeneic spleen cells. Cells that had been preincubated with anti-T15 idiotype (anti-T15id) antibodies and a PC-containing antigen, R36a for 3 d, were capable of specifically suppressing the anti-PC response of fresh normal spleen cells, indicating that idiotype-specific suppressor cells were generated during the culture period. The presence of specific antigen also appeared to be necessary because anti-T15id antibodies and a control antigen, DNP-Lys-Ficoll, were not capable of generating such suppressor cells. Suppressor cells were induced only in the population of spleen cells nonadherent to nylon wool and the suppressive activity was abrogated by treatment with anti-Thy 1.2 serum and complement. These results indicate that anti-idiotype antibodies and specific antigen can generate idiotype-specific suppressor T cells in vitro. These in vitro results may reflect in vivo mechanisms of idiotype suppression.


1979 ◽  
Vol 150 (5) ◽  
pp. 1229-1240 ◽  
Author(s):  
M S Sy ◽  
B A Bach ◽  
A Brown ◽  
A Nisonoff ◽  
B Benacerraf ◽  
...  

Anti-p-azobenzenearsonate (ABA) antibodies, coupled covalently to normal syngeneic spleen cells and then given intravenously to normal animals, were found to be potent tolerogens for delayed-type hypersensitivity (DTH) to ABA. The ability of the antibody-coupled cells to induce tolerance was determined to be a result of the cross-reactive idiotype (CRI+) fraction of the antibodies, because anti-ABA antibodies lacking the CRI+ components when coupled to spleen cells were unable to cause any significant inhibition. Furthermore, genetic analysis revealed that the ability of CRI-coupled cells to inhibit ABA-specific DTH is linked to Igh-1 heavy chain allotype, in as much animals which possess heavy chain allotypes similar to that of A/J were sensitive to this inhibition. Adoptive transfer experiments provided evidence that CRI-coupled cells induce suppressor cells, and spleen cells or thymocytes from animals received CRI-coupled cells were able to transfer suppression to naive recipients. In addition, treatment with anti-Thy1.2 serum plus complement completely abrogated their ability to transfer suppression. Thus, this active suppression is a T-cell-dependent phenomenon. In investigating the specificity of these suppressor T cells, it was found that they functioned in an antigen-specific manner and were unable to suppress the development of DTH to an unrelated hapten 2,4-dinitro-1-fluorobenzene.


1978 ◽  
Vol 148 (6) ◽  
pp. 1539-1549 ◽  
Author(s):  
N K Cheung ◽  
D H Scherr ◽  
K M Heghinian ◽  
B Benacerraf ◽  
M E Dorf

The palmitoyl derivative of the linear polypeptide of poly-(L-Glu-L-Lys-L-Phe)n (GLphi) can be coupled to spleen cells directly. The intravenous administration of 2 X 10(5)--3 X 10(7) GLphi-coupled syngeneic spleen cells induces GL-phi-specific suppressor T cells in C57BL/6 nonresponder mice. The suppression is antigen specific and can be detected by the inhibition of the primary GLphi plaque-forming cell response to challenge with GLphi-fowl gamma globulin. The number of inducer cells required for suppression carry less than 0.1 microgram of antigen. Spleen cells from tolerized mice can transfer suppression to normal syngeneic recipients. The suppression is cyclophosphamide sensitive and the suppressor cells bear the Thy 1.2 marker. This method of inducing antigen-specific suppressor cells may be generally applicable to other antigen systems.


1980 ◽  
Vol 28 (2) ◽  
pp. 331-335
Author(s):  
R M Nakamura ◽  
T Tokunaga

The induction of delayed-type hypersensitivity to Mycobacterium bovis BCG was specifically inhibited by suppressor T cells in C3H/He, a strain of mice which is a low responder to BCG. The existence of these suppressor cells was confirmed by an adoptive transfer of spleen cells of BCG-injected mice into cyclophosphamide-treated recipients. The suppressor cells appeared in the spleens of the mice 2 to 7 days after intravenous BCG injection. They were sensitive to anti-theta serum and complement and did not adhere to Sephadex G-10. A pretreatment of the mice with cyclophosphamide eliminated the suppression of delayed-type hypersensitivity. These suppressor cells effectively inhibited the induction of delayed-type hypersensitivity to BCG, but showed only weak effect on the expression of it.


1979 ◽  
Vol 150 (5) ◽  
pp. 1216-1228 ◽  
Author(s):  
M S Sy ◽  
B A Bach ◽  
Y Dohi ◽  
A Nisonoff ◽  
B Benacerraf ◽  
...  

Delayed-type hypersensitivity (DTH) to the azobenzenearsonate (ABA) hapten can be readily induced in A/J mice injecting ABA-coupled syngeneic spleen cells subcutaneously. To further characterize this T-cell-dependent immunological phenomenon, the effect of passively administered anti-cross-reactive idiotype common to anti-ABA antibodies of A/J mice (CRI) antibodies on the development of ABA-specific DTH was investigated. Animals given daily injections (of minute amounts) of anti-CRI antibodies subsequent to immunization with ABA-coupled cells show significant reduction of ABA specific responses. This inhibition is antigen specific and requires the intact immunoglobulin molecule, as F(ab')2 treatments were ineffective in suppressing the reaction. Investigations of the mechanism of the anti-CRI-induced suppression of ABA DTH revealed that the observed suppression is a result of the activation of suppressor cells. Spleen cells taken from animals which received anti-CRI antibodies were able to adoptively transfer suppression to naive recipients. This suppression was shown to be mediated by T cells, as anti-Thy1.2 plus complement completely abrogated the transfer of suppression. In addition, animals pretreated with low doses of cyclophosphamide were not suppressed by the administration of anti-CRI antibodies. The genetic restriction of anti-CRI-induced suppression was demonstrated. Antibodies to the major cross-reactive idiotype, (CRI) associated with anti-ABA antibodies in A/J mice were unable to suppress the development of DTH to ABA in BALB/c mice (H-2d, Igh-1a). Such antibodies were, however, fully active in suppressing ABA DTH in the allotype-congenic C.AL-20 strain which has an allotype (Igh-1d) similar to that of A/J (Igh-1e) on a BALB/c background, and which produces humoral antibodies with the CRI.


1980 ◽  
Vol 151 (6) ◽  
pp. 1413-1423 ◽  
Author(s):  
J Z Weinberger ◽  
B Benacerraf ◽  
M E Dorf

4-Hydroxy-3-nitrophenyl acetyl (NP)-derivatized syngeneic spleen cells administered intravenously induced a population of suppressor T cells that could suppress mice previously primed to NP. The effect was demonstrable when the suppressor cells were transferred to NP-primed mice on the day of challenge for delayed-type hypersensitivity (DTH) responses. In contrast to the suppressor T cell population, which abrogates 5-iodo derivative of NP (NIP)-specific DTH responses when administered before antigen priming, the effector-phase suppressors did not efficiently suppress NIP-specific DTH responses, and were not lysed by treatment with antiidiotype plus complement. Adoptive transfer experiments between major histocompatibility complex and allotype congenic strains of mice allowed demonstration of both Igh-V and I-A restrictions in the transfer of this cell population. The implications of these data in terms of network theories and proposed cellular models for negative immunoregulation were discussed.


1977 ◽  
Vol 146 (4) ◽  
pp. 970-985 ◽  
Author(s):  
C Waltenbaugh ◽  
J Thèze ◽  
J A Kapp ◽  
B Benacerraf

Injection of mice with L-glutamic acid50-L-tyrosine50 (GT)- or L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-specific suppressor T-cell factor (GT-TsF or GAT-TsF) up to 5 wk before antigenic challenge challenge suppresses GT-methylated bovine serum albumin (MBSA) and GAT-MBSA plaque-forming cells responses. T suppressor cells are responsible for the suppression induced by the suppressive extract as demonstrated by adoptive transfer and sensitivity to anti-Thy-1 and complement treatment. We conclude that suppressive extract induces specific suppressor T cells. The material responsible for generation of suppressor T cells is a product of the I subregion of the H-2 complex. We have excluded that suppressive quantities of antigens are present in the extract. A/J mice, which can neither be suppressed by GT nor make GT-TsF can be suppressed by BALB/c GT-tsf. Spleen cells from BALB/c GT TsF-primed A/J mice can adoptively transfer suppression to normal syngeneic recipients. A/J mice appear to be genetically defective in cells involved in factor production. These results are discussed in the light of a two-step model for induction of antigen-specific suppressor cells.


2001 ◽  
Vol 193 (11) ◽  
pp. 1303-1310 ◽  
Author(s):  
Detlef Dieckmann ◽  
Heidi Plottner ◽  
Susanne Berchtold ◽  
Thomas Berger ◽  
Gerold Schuler

It has been known for years that rodents harbor a unique population of CD4+CD25+ “professional” regulatory/suppressor T cells that is crucial for the prevention of spontaneous autoimmune diseases. Here we demonstrate that CD4+CD25+CD45RO+ T cells (mean 6% of CD4+ T cells) are present in the blood of adult healthy volunteers. In contrast to previous reports, these CD4+CD25+ T cells do not constitute conventional memory cells but rather regulatory cells exhibiting properties identical to their rodent counterparts. Cytotoxic T lymphocyte–associated antigen (CTLA)-4 (CD152), for example, which is essential for the in vivo suppressive activity of CD4+CD25+ T cells, was constitutively expressed, and remained strongly upregulated after stimulation. The cells were nonproliferative to stimulation via their T cell receptor for antigen, but the anergic state was partially reversed by interleukin (IL)-2 and IL-15. Upon stimulation with allogeneic (but not syngeneic) mature dendritic cells or platebound anti-CD3 plus anti-CD28 the CD4+CD25+ T cells released IL-10, and in coculture experiments suppressed the activation and proliferation of CD4+ and CD8+ T cells. Suppression proved IL-10 independent, yet contact dependent as in the mouse. The identification of regulatory CD4+CD25+ T cells has important implications for the study of tolerance in man, notably in the context of autoimmunity, transplantation, and cancer.


1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


1980 ◽  
Vol 151 (5) ◽  
pp. 1183-1195 ◽  
Author(s):  
M S Sy ◽  
M H Dietz ◽  
R N Germain ◽  
B Benacerraf ◽  
M I Greene

Administration of azobenzenearsonate (ABA)-coupled syngeneic spleen cells intravenously to A/J mice leads to the generation of suppressor T cells (Ts1) which exhibit specific binding to ABA-bovine serum albumin (BSA)-coated dishes. These Ts1 share idiotypic determinants with the major cross-reactive idiotype (CRI) of the anti-ABA antibodies of A/J mice, and also produce a soluble suppressor factor (TsF) bearing CRI and I-J subregion-coded determinants. Injection of this TsF into naive A/J mice elicits a second set of specific suppressor cells (Ts2) which are not lysed by anti-CRI antibody plus C, and which do not bind to ABA-BSA-coated dishes. However, in contrast with Ts1, these Ts2 do bind to plates bearing CRI+ anti-ABA immunoglobulin. Thus, Ts2 exhibit anti-idiotypic specificity. These data indicate that antigen elicits the production of a soluble T cell product bearing both variable portion of the Ig heavy chain (VH) and I-J subregion-coded determinants which serves to communicate between T cell subsets to establish an idiotype-anti-idiotype regulatory pathway.


Sign in / Sign up

Export Citation Format

Share Document