scholarly journals Fc epsilon receptor, a specific differentiation marker transiently expressed on mature B cells before isotype switching.

1986 ◽  
Vol 164 (5) ◽  
pp. 1455-1469 ◽  
Author(s):  
H Kikutani ◽  
M Suemura ◽  
H Owaki ◽  
H Nakamura ◽  
R Sato ◽  
...  

The expression of Fc epsilon R on human lymphocytes was studied with the anti-Fc epsilon R mAbs. Fc epsilon R was expressed on most mu+,delta+ circulating B cells, whereas T cells did not express Fc epsilon R even in patients with hyper-IgE syndrome. B cells with gamma, alpha, or epsilon phenotype did not express Fc epsilon R, moreover its expression could not be induced, suggesting that the Fc epsilon R expression was correlated with isotype switching. mu+delta+ B cells in bone marrow did not express Fc epsilon R, but PHA-sup (supernatant from PHA-stimulated cell cultures) could induce its expression, and the addition of IgE augmented this induction. Recombinant IL-2, IL-1, IFN-gamma or -beta, or purified B cell differentiation factor (BSF-2 B cell-stimulatory factor 2) could not induce Fc epsilon R expression in bone marrow B cells. IFN-gamma inhibited the Fc epsilon R expression induced by PHA-sup, suggesting that the human counterpart of BSF-1 may be responsible for Fc epsilon R expression in bone marrow B cells. B cells from patients with common variable immunodeficiency and ataxia telangiectasia did not express Fc epsilon R, but PHA-sup could induce its expression, indicating that circulating B cells of these patients are at a differentiation stage similar to B cells in bone marrow. The study showed that Fc epsilon R is a B cell-specific differentiation marker, the expression of which is restricted to a defined stage of B cell differentiation.

Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1647-1656 ◽  
Author(s):  
TN Small ◽  
CA Keever ◽  
S Weiner-Fedus ◽  
G Heller ◽  
RJ O'Reilly ◽  
...  

Abstract The circulating lymphocytes of 88 consecutive patients following autologous, conventional, or T-cell depleted bone marrow transplantation were serially analyzed for B-cell surface antigen expression and function. In the majority of patients, except for those who developed chronic graft-versus-host disease, the number of circulating CD20+ B cell normalized by the fourth posttransplant month. The earliest detectable B cells normally expressed HLA-DR, CD19, surface immunoglobulin (slg), CD21, Leu-8, and lacked expression of CD10 (CALLA). In addition, the circulating B cells expressed CD1c, CD38, CD5, and CD23 for the first year following transplant, antigens that are normally expressed on a small percentage of circulating B cells in normal adults, but highly expressed on cord blood B cells. Similar to cord blood B cells, patient B cells isolated during the first year following transplant, proliferated normally to Staphylococcus aureus Cowan strain I (SAC), and produced IgM, but minimal or no IgG when stimulated with pokeweed mitogen and SAC, unlike normal adult B cells that produce both. The similar phenotype and function of posttransplant and cord blood B cells, and their similar rate of decline in patients and normal children adds further evidence to support the hypothesis that B-cell differentiation posttransplant is recapitulating normal B-cell ontogeny.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 115-115
Author(s):  
Andrew A. Lane ◽  
Diederik van Bodegom ◽  
Bjoern Chapuy ◽  
Gabriela Alexe ◽  
Timothy J Sullivan ◽  
...  

Abstract Abstract 115 Extra copies of chromosome 21 (polysomy 21) is the most common somatic aneuploidy in B-cell acute lymphoblastic leukemia (B-ALL), including >90% of cases with high hyperdiploidy. In addition, children with Down syndrome (DS) have a 20-fold increased risk of developing B-ALL, of which ∼60% harbor CRLF2 rearrangements. To examine these associations within genetically defined models, we investigated B-lineage phenotypes in Ts1Rhr mice, which harbor triplication of 31 genes syntenic with the DS critical region (DSCR) on human chr.21. Murine pro-B cell (B220+CD43+) development proceeds sequentially through “Hardy fractions” defined by cell surface phenotype: A (CD24−BP-1−), B (CD24+BP-1−) and then C (CD24+BP-1+). Compared with otherwise isogenic wild-type littermates, Ts1Rhr bone marrow harbored decreased percentages of Hardy fraction B and C cells, indicating that DSCR triplication is sufficient to disrupt the Hardy A-to-B transition. Of note, the same phenotype was reported in human DS fetal liver B-cells, which have a block between the pre-pro- and pro-B cell stages (analogous to Hardy A-to-B). To determine whether DSCR triplication affects B-cell proliferation in vitro, we analyzed colony formation and serial replating in methylcellulose cultures. Ts1Rhr bone marrow (B6/FVB background) formed 2–3-fold more B-cell colonies in early passages compared to bone marrow from wild-type littermates. While wild-type B-cells could not serially replate beyond 4 passages, Ts1Rhr B-cells displayed indefinite serial replating (>10 passages). Ts1Rhr mice do not spontaneously develop leukemia, so we utilized two mouse models to determine whether DSCR triplication cooperates with leukemogenic oncogenes in vivo. First, we generated Eμ-CRLF2 F232C mice, which express the constitutively active CRLF2 mutant solely within B-cells. Like Ts1Rhr B-cells, (but not CRLF2 F232C B-cells) Ts1Rhr/CRLF2 F232C cells had indefinite serial replating potential. In contrast with Ts1Rhr B-cells, Ts1Rhr/CRLF2 F232C B-cells also engrafted into NOD.Scid.IL2Rγ−/− mice and caused fatal and serially transplantable B-ALL. Second, we retrovirally transduced BCR-ABL1 into unselected bone marrow from wild-type and Ts1Rhr mice and transplanted into irradiated wild-type recipients. Transplantation of transduced Ts1Rhr cells (106, 105, or 104) caused fatal B-ALL in recipient mice with shorter latency and increased penetrance compared to recipients of the same number of transduced wild-type cells. By Poisson calculation, the number of B-ALL initiating cells in transduced Ts1Rhr bone marrow was ∼4-fold higher than in wild-type animals (1:60 vs 1:244, P=0.0107). Strikingly, transplantation of individual Hardy A, B, and C fractions after sorting and BCR-ABL1 transduction demonstrated that the increased leukemia-initiating capacity almost completely resides in the Ts1Rhr Hardy B fraction; i.e., the same subset suppressed during Ts1Rhr B-cell differentiation. To define transcriptional determinants of these phenotypes, we performed RNAseq of Ts1Rhr and wild-type B cells in methylcellulose culture (n=3 biologic replicates per genotype). As expected, Ts1Rhr colonies had ∼1.5-fold higher RNA abundance of expressed DSCR genes. We defined a Ts1Rhr signature of the top 200 genes (false discovery rate (FDR) <0.25) differentially expressed compared with wild-type cells. Importantly, this Ts1Rhr signature was significantly enriched (P=0.02) in a published gene expression dataset of DS-ALL compared with non-DS-ALL (Hertzberg et al., Blood 2009). Query of >2,300 signatures in the Molecular Signatures Database (MSigDB) C2 Chemical and Genetic Perturbations with the Ts1Rhr signature identified enrichment in multiple gene sets of polycomb repressor complex (PRC2) targets and H3K27 trimethylation. Most notably, SUZ12 targets within human embryonic stem cells were more highly expressed in Ts1Rhr cells (P=1.2×10−6, FDR=0.003) and the same SUZ12 signature was enriched in patients with DS-ALL compared to non-DS-ALL (P=0.007). In summary, DSCR triplication directly suppresses precursor B-cell differentiation and promotes B-cell transformation both in vitro and by cooperating with proliferative alterations such as CRLF2 activation and BCR-ABL1 in vivo. Pharmacologic modulation of H3K27me3 effectors may overcome the pro-leukemogenic effects of polysomy 21. Disclosures: No relevant conflicts of interest to declare.


1986 ◽  
Vol 164 (1) ◽  
pp. 303-308 ◽  
Author(s):  
P C Isakson

We have determined whether B cells previously activated by anti-Ig (anti-Ig blasts) are responsive to lymphokines that induce isotype switching. Culture of anti-Ig blasts with a mixture of lymphokines, including BSF-1, resulted in marked secretion of IgM and IgG1, but not other IgG isotypes. The IgG1 response of anti-Ig blasts to lymphokines was 13-fold greater than was observed with splenic B cells. B cell blasts induced by 8-mercaptoguanosine or dextran sulfate did not secrete high levels of any IgG isotype in response to lymphokines alone. An mAb against BSF-1 suppressed the IgG1 response of anti-Ig blasts, but not the IgM response to lymphokines. These data suggest that anti-Ig-treated B cells respond to at least one of the effects of BSF-1.


2010 ◽  
Vol 207 (2) ◽  
pp. 365-378 ◽  
Author(s):  
Dimitra Zotos ◽  
Jonathan M. Coquet ◽  
Yang Zhang ◽  
Amanda Light ◽  
Kathy D'Costa ◽  
...  

Germinal centers (GCs) are sites of B cell proliferation, somatic hypermutation, and selection of variants with improved affinity for antigen. Long-lived memory B cells and plasma cells are also generated in GCs, although how B cell differentiation in GCs is regulated is unclear. IL-21, secreted by T follicular helper cells, is important for adaptive immune responses, although there are conflicting reports on its target cells and mode of action in vivo. We show that the absence of IL-21 signaling profoundly affects the B cell response to protein antigen, reducing splenic and bone marrow plasma cell formation and GC persistence and function, influencing their proliferation, transition into memory B cells, and affinity maturation. Using bone marrow chimeras, we show that these activities are primarily a result of CD3-expressing cells producing IL-21 that acts directly on B cells. Molecularly, IL-21 maintains expression of Bcl-6 in GC B cells. The absence of IL-21 or IL-21 receptor does not abrogate the appearance of T cells in GCs or the appearance of CD4 T cells with a follicular helper phenotype. IL-21 thus controls fate choices of GC B cells directly.


Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1647-1656 ◽  
Author(s):  
TN Small ◽  
CA Keever ◽  
S Weiner-Fedus ◽  
G Heller ◽  
RJ O'Reilly ◽  
...  

The circulating lymphocytes of 88 consecutive patients following autologous, conventional, or T-cell depleted bone marrow transplantation were serially analyzed for B-cell surface antigen expression and function. In the majority of patients, except for those who developed chronic graft-versus-host disease, the number of circulating CD20+ B cell normalized by the fourth posttransplant month. The earliest detectable B cells normally expressed HLA-DR, CD19, surface immunoglobulin (slg), CD21, Leu-8, and lacked expression of CD10 (CALLA). In addition, the circulating B cells expressed CD1c, CD38, CD5, and CD23 for the first year following transplant, antigens that are normally expressed on a small percentage of circulating B cells in normal adults, but highly expressed on cord blood B cells. Similar to cord blood B cells, patient B cells isolated during the first year following transplant, proliferated normally to Staphylococcus aureus Cowan strain I (SAC), and produced IgM, but minimal or no IgG when stimulated with pokeweed mitogen and SAC, unlike normal adult B cells that produce both. The similar phenotype and function of posttransplant and cord blood B cells, and their similar rate of decline in patients and normal children adds further evidence to support the hypothesis that B-cell differentiation posttransplant is recapitulating normal B-cell ontogeny.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1152-1152
Author(s):  
Rita Fragoso ◽  
Catia Igreja ◽  
Claudia Appleton ◽  
Alexandra Henriques ◽  
Nuno Clode ◽  
...  

Abstract VEGF and its receptors are expressed in the hematopoietic system. A role for FLT-1 in particular was described in monocyte-macrophage migration and lineage differentiation (Sawano A et al, 2001), megakaryocytes maturation (Casella I et al, 2003) and dendritic cell differentiation (Dikov M et al, 2005). Given that the expression of this receptor in the lymphoid lineage is not known, we to studied FLT-1 expression and a putative function in normal lymphoid progenitors. To address this question we induced in vitro CD34+ cells differentiation into the B cell lineage using a well established assay (on S17 stromal cells). With this approach, we observed that FLT-1 is expressed throughout B cell differentiation increasing along the differentiation process, and reaching its highest at the “immature B cell” stage. We also neutralized FLT-1 during B cell differentiation in vitro. Surprisingly, in the presence of the FLT-1 neutralizing antibody (6.12 monoclonal Ab, from ImClone systems), at the end of the assays (4 different experiments) a significantly higher number of CD19+ cells (mainly immature B cells) were detected. Analyzing some of the transcription factors known to be involved in the commitment and differentiation of lymphoid B cells, we observed that the expression of PU.1, Pax5 and E47 was up-regulated by FLT-1 neutralization. Next, given that FLT-1 function was mainly associated with cell migration, and since it is expressed in B cells that are ready to exit the bone marrow into secondary lymphoid organs, we reasoned that FLT-1 might have a role in B cells exit from the bone marrow. For this purpose, we treated mice with the FLT-1 neutralizing Ab for 3 days and analyzed B cells levels in bone marrow and peripheral blood. FLT-1 neutralization led to a significant decrease (p&lt;0.05) in B cells in the bone marrow and peripheral blood. Taken together, our data supports a clear role for FLT-1 in B cell commitment. To understand if VEGF/PlGF signalling through FLT-1 promotes myeloid differentiation, suppresses B cell differentiation or simply regulates the quiescent state of hematopoietic stem cells, we differentiated in vitro CD34+/FLT-1− cells and CD34+/FLT-1+ cells (10% of CD34+ cells) using the assay described above. Interestingly, CD34+/FLT-1− differentiation in vitro largely promoted B cell differentiation, while CD34+/FLT-1+ cells originated mostly myeloid cell differentiation. We are currently exploiting the molecular basis whereby FLT-1 signalling may impair B cells commitment and possibly promotes myeloid differentiation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 204-204 ◽  
Author(s):  
Chozhavendan Rathinam ◽  
Christoph Klein

Abstract Hematopoietic stem cell differentiation is specified by cytokines and transcription factors but the mechanisms controlling instructive and permissive signalling networks are poorly understood. We provide evidence that common lymphoid progenitor (CLP)-1-dependent IL7-receptor mediated B cell differentiation is critically controlled by the transcriptional repressor Gfi1. Gfi1 is expressed selectively in CLP1 but not in CLP2 cells. Furthermore, in Gfi1-deficient hematopoiesis, CLP1 cells are significantly reduced, while CLP2 cells are present in normal numbers. Hardy fractions B/C, proposed to represent IL7-sensitive stages of early B cell development, are also reduced in Gfi1-deficient bone marrow. In contrast to bone marrow B cells, the phenotype of Gfi1-deficient thymic B cells was comparable to wildtype mice, suggesting that IL7-mediated signalling is perturbed. This hypothesis was further substantiated by a side-by-side comparison of Gfi1- and IL7-deficient mice; both knockout mice revealed a similar B cell phenotype in bone marrow and thymus. In vitro, Gfi1-deficient Sca1+ckit+lin- hematopoietic stem cells did not differentiate into B220+IgM+ B cells in the presence of SCF and IL7, suggesting that instructive IL7-mediated signals are not operative in the absence of Gfi1. Upon retroviral Gfi1 gene transfer, B differentiation was re-established Furthermore, whereas a combination of SCF and IL7 maintained the viability and induced proliferation of Gfi1-deficient HSC, their viability and proliferative capacity was significantly reduced in the presence of IL7 only, suggesting that both trophic and proliferative responses to IL7 depend on Gfi1. In addition, RT-PCR analysis revealed that in early B cell development the coordinated upregulation of the B cell specific transcription factors E2A, EBF, and Pax5 was significantly reduced in sorted Hardy fractions obtained from Gfi1-deficient mice. We reasoned that defective IL7-mediated responses might be due to defective Jak/Stat signalling. Indeed, phosphorylation of STAT5 was almost undectable in Gfi1-deficient B-progenitor cells. This may be due to enhanced expression levels of SOCS3 as determined by RT-PCR and Western Blot analysis. Thus, Gfi1 selectively specifies IL7-dependent development of B cells from CLP1 progenitors, providing clues to the transcriptional networks integrating cytokine signals and lymphoid differentiation.


2011 ◽  
Vol 17 (12) ◽  
pp. 1418-1423 ◽  
Author(s):  
Stephanie Knippenberg ◽  
Joost Smolders ◽  
Mariëlle Thewissen ◽  
Evelyn Peelen ◽  
Jan Willem Cohen Tervaert ◽  
...  

Background: Vitamin D has been proposed as a promoter of immune homeostasis in multiple sclerosis (MS). During the past decade, the focus of the effects of vitamin D has been on dendritic cells and on T cells. Since there is an increasing interest in the role of B cells in the pathophysiology of MS, we studied the role of vitamin D on B cells in vivo in patients with MS. Objective: We explored the effects of 12 weeks high-dose vitamin D3 supplementation on peripheral B cell differentiation, immunoglobulin production and levels of B cell activating factor (BAFF) in 15 patients with MS. Methods: Circulating B cell subsets were characterized by flow cytometry. Plasma immunoglobulin levels were assessed by nephelometry. Plasma BAFF levels were assessed by enzyme-linked immunosorbent assay (ELISA). Results: Although a significant increase serum 25-hydroxyvitamin D was induced, we found no significant shift in B cell differentiation, isotype switching, or plasma BAFF levels. Conclusion: In patients with MS, supplementation of high doses vitamin D3 does not have substantial effects on phenotypic markers of B cell differentiation in circulating B cells. Future studies may unravel more subtle changes in the B cell compartment, either in the circulation or in the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document