scholarly journals Use of synthetic peptides of influenza nucleoprotein to define epitopes recognized by class I-restricted cytotoxic T lymphocytes.

1987 ◽  
Vol 165 (6) ◽  
pp. 1508-1523 ◽  
Author(s):  
J Bastin ◽  
J Rothbard ◽  
J Davey ◽  
I Jones ◽  
A Townsend

The conserved epitopes of influenza nucleoprotein (NP) recognized by class I MHC-restricted CTL from CBA (H-2k) and C57BL/10 (H-2b) mice have been defined in vitro with synthetic peptides 50-63 and 365-379, respectively. Two Db-restricted clones were described that recognize different epitopes on peptide 365-379. Finally, the recognition of complete NP was shown to be approximately 200-fold less efficient than peptide in the cytotoxicity assay. These phenomena are closely related to results with class II-restricted T cells and they strengthen the hypothesis that influenza proteins are degraded in the infected cell before recognition by class I-restricted CTL.

2019 ◽  
Vol 68 (10) ◽  
pp. 1605-1619 ◽  
Author(s):  
Yuji Tomita ◽  
Eri Watanabe ◽  
Masumi Shimizu ◽  
Yasuyuki Negishi ◽  
Yukihiro Kondo ◽  
...  

Abstract The main effectors in tumor control are the class I MHC molecule-restricted CD8+ cytotoxic T lymphocytes (CTLs). Tumor-specific CTL induction can be regulated by dendritic cells (DCs) expressing both tumor-derived epitopes and co-stimulatory molecules. Immunosuppressive tolerogenic DCs, having down-regulated co-stimulatory molecules, are seen within the tumor mass and can suppress tumor-specific CTL induction. The tolerogenic DCs expressing down-regulated XCR1+CD141+ appear to be induced by tumor-derived soluble factors or dexamethasone, while the immunogenic DCs usually express XCR1+CD141+ molecules with a cross-presentation function in humans. Thus, if tolerogenic DCs can be reactivated into immunogenic DCs with sufficient co-stimulatory molecules, tumor-specific CD8+ CTLs can be primed and activated in vivo. In the present study, we converted human tolerogenic CD141+ DCs with enhanced co-stimulatory molecule expression of CD40, CD80, and CD86 through stimulation with non-toxic mycobacterial lipids such as mycolic acid (MA) and lipoarabinomannan (LAM), which synergistically enhanced both co-stimulatory molecule expression and interleukin (IL)-12 secretion by XCR1+CD141+ DCs. Moreover, MA and LAM-stimulated DCs captured tumor antigens and presented tumor epitope(s) in association with class I MHCs and sufficient upregulated co-stimulatory molecules to prime naïve CD3+ T cells to become CD8+ tumor-specific CTLs. Repeat CD141+ DC stimulation with MA and LAM augmented the secretion of IL-12. These findings provide us a new method for altering the tumor environment by converting tolerogenic DCs to immunogenic DCs with MA and LAM from Mycobacterium tuberculosis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1775-1775
Author(s):  
Cristina Maccalli ◽  
Maria Gounari ◽  
Kostas Stamatopoulos ◽  
Federico Caligaris-Cappio ◽  
Giorgio Parmiani ◽  
...  

Abstract Abstract 1775 The immunoglobulin gene repertoire in CLL is remarkably restricted with greater than 30% of cases carrying quasi-identical (stereotyped)heavy complementarity-determining region 3 (VH CDR3) sequences. Indeed, cases can be clustered into different subsets based on shared, subset-biased motifs within the clonotypic VH CDR3s, with, notably, only a handful of subsets accounting for almost 10% of all CLL. VH CDR3 stereotypes are more frequent in cases with unmutated IGHV genes (U-CLL) who are associated with adverse prognosis. In principle, VH CDR3 stereotypy might allow to exploit these IG motifs as candidate Tumor Associated Antigens (TAA) for targeted immunotherapy of CLL. The aim of our study was to validate as potential TAA subset-specific IG motifs from major CLL subsets, focusing especially on subsets #1 and #2 that are the largest overall and both associated with aggressive clinical course. We have so far identified, by in silico analysis, 1–3 long peptides (15-mer) encompassing the VH CDR3 protein regions of subsets #1, 2, 4, 6, 8, 10 with (i) high binding score to MHC class II molecules and (ii) also containing minimal HLA class I-specific epitopes (HLA-A2, -A3, -A24, DR1, DR7, DR13 that are most frequent in the Caucasian population). Blood lymphocytes from 18 CLL patients were collected and phenotyped by flow cytometry with appropriate antibodies to assess the expression of stimulatory, co-stimulatory and negative regulatory molecules on both T and B cells. In addition, HLA typing of CLL patients was performed to select patients expressing the aforementioned HLA molecules. Overall, 13/18 patients matched the defined HLA class I and/or class II molecules. Negatively purified T cells from 11 CLL patients expressing HLA-A2 and/or DR13 have been then stimulated in vitro with the synthesized peptides of the specific stereotype (subset #1 and 2) in the presence of culture medium containing 5% of human serum plus IL-2 (20 IU/ml) and IL-15 (10 ng/ml). These T lymphocytes were then weekly stimulated with autologous irradiated antigen presenting cells (APC; monocytes, B cells, etc.) pulsed with the peptides. Starting from the third week of culture, the specific recognition of CDR3-derived TAAs and of tumor cells (autologous CLL cells) by the T cell cultures has been assessed by in vitro functional assays (ELISPOT assay). We were able to isolate CDR3- (subsets #1 and #2) and tumor-specific T cells from 5/11 CLL patients. In addition, in 4 selected patients the Ag- and tumor specific T lymphocytes have been expanded in vitro by Rapid Expansion Protocol (REP), based on the stimulation of T cells with allogeneic irradiated PBMCs from healthy donors plus OKT3 and high doses of IL-2. Using this protocol we were able to obtain large numbers (2–10 ×109) of anti-CDR3 T cells in all 4 cases tested, thereby, in principle, achieving the potential to use this protocol for expanding sufficient cells for clinical applications. Interestingly, post-REP T cell cultures showed enrichment (85–90%) of CD3+CD8+ T cells and down-modulation of negative regulatory molecules, such as CTLA-4, as compared to pre-REP in vitro stimulated T cells. These cells could be expanded in vitro for up to 6 weeks without any decay in proliferation. Taken together, these results indicate that stereotyped VH CDR3 peptide sequences can represent candidate antigens to elicit T cell-mediated anti-CLL responses, especially in poor prognosis cases, where therapeutic innovation is more urgently needed. After validation of this protocol in a larger series, our results may provide the proof of principle for the design of new immunotherapy protocols for CLL, including both active vaccination and adoptive cell therapy. Disclosures: No relevant conflicts of interest to declare.


1994 ◽  
Vol 179 (2) ◽  
pp. 473-479 ◽  
Author(s):  
D J Peace ◽  
J W Smith ◽  
W Chen ◽  
S G You ◽  
W L Cosand ◽  
...  

Ras protooncogenes are activated by characteristic point mutations in a wide variety of malignancies. The expressed p21ras proteins are oncogenic by virtue of single substituted amino acids, usually at position 12 or 61 of the 189-residue p21ras protein. In the current study, the ability of class I major histocompatibility complex (MHC)-restricted T cells to recognize the altered segment of a transforming p21ras protein and to lyse cells transformed by the corresponding ras oncogene was examined. Synthetic ras peptides encompassing the common activating substitution of leucine for glutamine at position 61 were constructed with an amino acid motif appropriate for binding to the H-2Kb murine class I MHC molecule. Cytotoxic T lymphocytes (CTL) specific for bound ras leucine 61 peptide were elicited by in vitro immunization of normal lymphocytes with synthetic peptides. The ras peptide-induced CTL specifically lysed syngeneic fibroblasts transformed by an activated ras gene encoding oncogenic p21ras protein containing the same single amino acid substitution. Thus, in some circumstances, mutated p21ras protein can serve as a tumor-specific antigen.


1993 ◽  
Vol 177 (2) ◽  
pp. 317-327 ◽  
Author(s):  
S R Nahill ◽  
R M Welsh

Polyclonal stimulation of CD8+ cytotoxic T lymphocytes (CTL) occurs during infection with many viruses including those not known to transform CTL or encode superantigens. This polyclonal CTL response includes the generation of high levels of allospecific CTL directed against many class I haplotypes. In this report we investigated whether the allospecific CTL generated during an acute lymphocytic choriomeningitis virus (LCMV) infection of C57BL/6 mice were stimulated specifically by antigen recognition or nonspecifically by polyclonal mechanisms possibly involving lymphokines or superantigens. An examination of the ability of different strains of mice to induce high levels of CTL specific for a given alloantigen showed that most, but not all, strains generated high levels of allospecific CTL, and that their abilities to generate them mapped genetically to the major histocompatibility complex locus, exclusive of the class II region. This indicated that the virus-induced allospecific CTL generation was independent of the class II allotype, and mice depleted of CD4+ cells generated allospecific CTL, indicating independence of class II-CD4+ cell interactions and resulting CD4+ cell-secreted lymphokines. FACS staining with a variety of V beta-binding antibodies did not show a superantigen-like depletion or enrichment of any tested V beta + subset during infection. Several experiments provided evidence in support of direct stimulation of CD8+ cells via the T cell receptor: (a) both virus- and allo-specific killing were enriched within a given V beta subpopulation; (b) relative CTL precursor frequencies against different class I alloantigens changed during the course of virus infection; (c) the relative levels of virus-induced, allospecific CTL-mediated lysis at day 8 after infection did not parallel the CTL precursor frequencies before infection; and (d) limiting dilution analyses of day 8 LCMV-infected spleen cells stimulated by virus-infected syngeneic peritoneal exudate cells (PEC) revealed not only the expected virus-specific CTL clones, but also a high frequency of clones that were cross-reactive with allogeneic and virus-infected syngeneic targets. In addition to the virus cross-reactive allospecific CTL clones, virus-infected PEC also stimulated the generation of some allospecific clones that did not lyse virus-infected fibroblasts. Surprisingly, LCMV-infected PEC were much more efficient at stimulating allospecific CTL clones from day 8 LCMV-infected splenocytes than were allogeneic stimulators. These results indicate that at least part of the polyclonal allospecific CTL response elicited by acute virus infection is a consequence of the selective expansion of many clones of allospecific CTL which cross-react with virus-infected cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 166 (6) ◽  
pp. 1716-1733 ◽  
Author(s):  
J S Weber ◽  
G Jay ◽  
K Tanaka ◽  
S A Rosenberg

We have shown that two weakly immunogenic MCA sarcomas developed in our laboratory that are sensitive to high-dose IL-2 immunotherapy express class I MHC in vivo and in vitro. Two nonimmunogenic MCA sarcomas are relatively insensitive to IL-2 therapy and express minimal or no class I MHC molecules in vivo and in vitro. To study the role of MHC in the therapy of tumors with IL-2, a class I-deficient murine melanoma, B16BL6, was transfected with the Kb class I gene. Expression of class I MHC rendered B16BL6 advanced pulmonary macrometastases sensitive to IL-2 immunotherapy. 3-d micrometastases of CL8-2, a class I transfected clone of B16BL6, were significantly more sensitive to IL-2 therapy than a control nontransfected line. Expression of Iak, a class II MHC molecule, had no effect on IL-2 therapy of transfectant pulmonary micrometastases in F1 mice. By using lymphocyte subset depletion with mAbs directed against Lyt-2, therapy of class I transfectant macrometastases with high-dose IL-2 was shown to involve an Lyt-2 cell. In contrast, regression of micrometastases treated with low-dose IL-2 involved Lyt-2+ cells, but regression mediated by high doses of IL-2 did not. We hypothesize that both LAK and Lyt-2+ T cells effect IL-2-mediated elimination of micrometastases, but only Lyt-2+ T cells are involved in macrometastatic regression. Low doses of IL-2 stimulate Lyt-2+ cells to eliminate class I-expressing micrometastases, but high doses of IL-2 can recruit LAK cells to mediate regression of micrometastases independent of class I expression. Only high-dose IL-2, mediating its effect predominantly via Lyt-2+ cells, is capable of impacting on MHC class I-expressing macrometastases. Macrometastases devoid of class I MHC antigens appear to be resistant to IL-2 therapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2876-2876
Author(s):  
Monica Ghei ◽  
David F. Stroncek ◽  
Maurizio Provenzano

Abstract In healthy subjects, primary infection with Cytomegalovirus (CMV) is usually mild or asymptomatic and is effectively controlled by the cell-mediated immune response. However, in immune compromised individuals, such as those with AIDS or after bone marrow transplantation, CMV reactivation is associated with significant morbidity until the individual’s immune system is completely reconstituted. One means of preventing post-transplant CMV infection is adoptive immunotherapy using CMV-specific cytotoxic T cells (CTLs) from the transplant donor. Several 9- and 10-mer HLA class I restricted peptides derived from the immune dominant CMV 65 kd matrix phosphoprotein (pp65) have been shown to produce CMV-specific CTLs. Two overlapping HLA-A24 restricted peptides have been specifically described: pp65 341–349 and pp65 341–350. These are 9- and 10-mer peptides that overlap except for the last amino acid phenylalanine (F) at the C-terminus [QYDPVAALF(F)]. Despite their similarity, the ability of these peptides to induce a T cell response has been reported to differ. Although it has been generally accepted that a unique CMV peptide is bound and presented by each separate HLA class I molecule, recent studies suggest that certain peptides are more promiscuous and may be presented by more than one HLA Class I antigen. For example, the 9-mer pp65 341–349 has been shown to stimulate CTLs from both HLA-A24 and Cw4 donors, while the 10-mer pp65 341–350 has been shown to be reactive with both HLA-A24 and A1 donors. The current investigation sought to compare the potency of these two peptides and determine the optimum peptide size for effective CMV adoptive immune therapy. Both peptides were tested for their ability to stimulate CMV-specific CTLs in HLA-A24, HLA-A1, and HLA-Cw4 restriction. In addition, a pp65 16-mer that included the 9- and 10-mers was tested for its ability to reactivate either CD8+ or CD4+ memory T cells. IFN-γ mRNA transcript as well as protein production were measured by in vitro cell culture assays. Peptide stimulations were performed on isolated CD8 and CD4 T lymphocytes by inducing the cells for 3 hours after a 2-week in vitro sensitization. The goal of the investigation was to determine whether both the 9- and the 10-mer peptides maintained high levels of CTL stimulation over time for all HLA restrictions studied. Moreover, it was important to investigate whether stimulation with the 16-mer, followed by restimulation by the two smaller peptides embedded within the larger sequence, led to effective T cell memory immune response. The 9- and 10-mer peptides effectively stimulated CTLs from HLA-A24, HLA-A1, and HLA-Cw4 CMV seropositive donors. Although both 9- and 10-mer were able to maintain high levels of stimulation over time for all restrictions, the 9-mer induced highest responses in cells expressing HLA-A24 (S.I. 4.07–528) or HLA-Cw4 (S.I. 4.15–483) while the 10-mer induced highest responses in cells expressing HLA-A24 (S.I. 3.5–528) or HLA-A1 (S.I. 8.25–615). The 16-mer peptide was also able to stimulate T cells from all HLA-A24, A1 and Cw4 donors (S.I. 6.95, 4.96, 5.02) at levels that are well maintained over time. This data confirmed that both the 9- and the 10-mer peptides are promiscuous and not restricted to a single HLA antigen. These peptides that have the ability to produce CMV-specific CTLs in patients with several different HLA types present a practical advantage over peptides that are restricted only to a single HLA type, and thus are optimal for CMV adoptive immune therapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2709-2709
Author(s):  
Masahiro Ogasawara ◽  
Misato Kikuchi ◽  
Satoru Kimura ◽  
Koichiro Kobayashi ◽  
Takayoshi Miyazono ◽  
...  

Abstract Survivin, a member of the inhibitors of the apoptosis family, is overexpressed frequently in a variety of cancers and hematological malignancies, but not in normal tissues. Murine in vivo and human in vitro studies have suggested that immunotherapy of cancer patients using survivin peptide might be feasible. In the present study, we examined whether HLA-A24 restricted cytotoxic T lymphocytes (CTL) which recognize survivin peptide can be generated from peripheral blood of lymphoma patients. HLA-A24 positive four lymphoma patients and two healthy volunteers were enrolled. Three immunodominant 9-mer candidate peptides (2B, 3A, 3B) were selected on the basis of anchoring motif of peptide binding to HLA-A24 molecule. CD8 T cells from the patients and healthy volunteers were stimulated several times with autologous monocyte-derived dendritic cells pulsed with survivin or control HIV peptides and tested for peptide-specific cytotoxicity by an LDH-release assay. CTL generated with survivin 2B peptide lysed autologous monocytes pulsed with a relevant peptide. However, other survivin peptides did not elicit CTL response. Non-pulsed or HIV peptide-pulsed monocytes were not lysed. On the other hand, CTL generated with HIV peptide only lysed HIV peptide-pulsed monocytes. CTL did not lyse allogeneic monocytes regardless of the peptide pulse. Cytotoxic activity was inhibited by the pretreatment of target cells by anti-HLA class I, not by anti-HLA-DR monoclonal antibody, indicating that the lysis was HLA class I (A24) restricted. These cells did not lyse Daudi and K562, excluding the involvement of LAK or NK activity. Importantly, these survivin peptide-specific CTL showed cytotoxicity to the patient’s lymphoma cells and HLA-A24 positive lymphoma cells. Based on these preclinical data, we have just started a pilot clinical study to examine the safety and the efficacy of peptide vaccination to relapsed, chemotherapy-resistant malignant lymphoma patients who are HLA-A24 and survivin positive. A 46-year old male patient with diffuse large B-cell lymphoma has just completed two courses of four vaccinations at two-week intervals with survivin 2B peptide (1 μg subcutaneously) in an incomplete Freund’s adjuvant (Montanide ISA-51, SEPPIC Co. France). We observed a marked decrease in the size of extra-nodular surface and cervical lymphnodes following vaccinations without serious adverse events. Immunological evaluations using HLA-tetramer and T cell receptor clonality assays revealed an increase in survivin-specific CTL frequency after vaccinations. The in-vitro feasibility study and pilot clinical trial indicate that a vaccination with a survivin peptide is safe and might be a promising novel strategy for the treatment of lymphoma patients.


Sign in / Sign up

Export Citation Format

Share Document