scholarly journals Class I-restricted processing and presentation of exogenous cell-associated antigen in vivo.

1990 ◽  
Vol 171 (2) ◽  
pp. 377-387 ◽  
Author(s):  
F R Carbone ◽  
M J Bevan

MHC class I-restricted T lymphocyte responses are usually directed to cellular antigenic components resulting from endogenous gene expression. Exogenous, non-replicating antigens, such as soluble proteins, usually fail to enter the class I pathway of antigen processing and presentation. Consistent with this notion, we have recently shown that soluble, exogenous proteins can be efficiently processed for class I presentation in vitro only if they are introduced directly into the target cell cytoplasm. In this report we extend this work to the in vivo situation by introducing soluble protein into the cytoplasm of mouse splenocytes via the osmotic lysis of pinosomes and then using these cells for in vivo immunization. Our results show that cytoplasmic loading of OVA and beta-GAL into H-2b and H-2d splenocytes respectively, resulted in effective in vivo immunogens for class I-restricted CTL. To our surprise, control spleen cell preparations simply incubated with the exogenous, native protein for 10 min at 37 degrees C in isotonic medium and then washed could also induce a comparable class I-restricted CTL response following intravenous injection. Experiments using (H-2b X H-2d)F1 mice showed that protein pulsed splenocytes from one parental strain could effectively "cross prime" T cells restricted to the MHC of the other parental strain. In all cases, target cell recognition by the effector CTL generated by immunization with spleen cell-associated antigen required the antigen to be present in the cell cytoplasm. Thus the CTL do not recognize target cells exposed to soluble, exogenous antigen. These results, reminiscent of analogous experiments with cross priming by minor histocompatibility antigens, argue that class I-restricted processing and presentation of exogenous antigen can occur in vivo following immunization with cell-associated antigen.

2003 ◽  
Vol 10 (2-4) ◽  
pp. 213-226 ◽  
Author(s):  
J. Bruce Sundstrom ◽  
Kimberley C. Jollow ◽  
Veronique Braud ◽  
Francois Villinger ◽  
Andrew J. McMichael ◽  
...  

In this investigation we have explored the relationship between the weak allogenicity of cardiac myocytes and their capacity to present allo-antigens by examining the ability of a human cardiac myocyte cell line (W-1) to process and present nominal antigens. W-1 cells (HLA-A*0201 and HLA-DR β1*0301) pulsed with the influenza A matrix 1 (58-66) peptide (M1) were able to serve as targets for the HLA-A*0201 restricted CTL line PG, specific for M1-peptide. However, PG-CTLs were unable to lyse W-1 target cells infected with a recombinant vaccinia virus expressing the M1 protein (M1-VAC). Pretreatment of these M1-VAC targets with IFN-γ partially restored their ability to process and present the M1 peptide. However, parallel studies demonstrated that IFN-γ pretreated W-1's could not process tetanus toxin (TT) or present the TT(830-843) peptide to HLA-DR3 restricted TT-primed T cells. Semi-quantitative RT-PCR measurements revealed significantly lower constitutive levels of expression for MHC class I, TAP-1/2, and LMP-2/7 genes in W-1s that could be elevated by pretreatment with IFN-γ to values equal to or greater than those expressed in EBV-PBLs. However, mRNA levels for the genes encoding MHC class II, Ii, CIITA, and DMA/B were markedly lower in both untreated and IFN-γ pretreated W-1s relative to EBV-PBLs. Furthermore, pulse-chase analysis of the corresponding genes revealed significantly lower protein levels and longer half-life expression in W-1s relative to EBV-PBLs. These results suggest that weak allogenicity of cardiac myocytes may be governed by their limited expression of MHC genes and gene products critical for antigen processing and presentation.


1993 ◽  
Vol 178 (3) ◽  
pp. 961-969 ◽  
Author(s):  
M S Malnati ◽  
P Lusso ◽  
E Ciccone ◽  
A Moretta ◽  
L Moretta ◽  
...  

Natural killer (NK) cells provide a first line of defense against viral infections. The mechanisms by which NK cells recognize and eliminate infected cells are still largely unknown. To test whether target cell elements contribute to NK cell recognition of virus-infected cells, human NK cells were cloned from two unrelated donors and assayed for their ability to kill normal autologous or allogeneic cells before and after infection by human herpesvirus 6 (HHV-6), a T-lymphotropic herpesvirus. Of 132 NK clones isolated from donor 1, all displayed strong cytolytic activity against the NK-sensitive cell line K562, none killed uninfected autologous T cells, and 65 (49%) killed autologous T cells infected with HHV-6. A panel of representative NK clones from donors 1 and 2 was tested on targets obtained from four donors. A wide heterogeneity was observed in the specificity of lysis of infected target cells among the NK clones. Some clones killed none, some killed only one, and others killed more than one of the different HHV-6-infected target cells. Killing of infected targets was not due to complete absence of class I molecules because class I surface levels were only partially affected by HHV-6 infection. Thus, target cell recognition is not controlled by the effector NK cell alone, but also by polymorphic elements on the target cell that restrict NK cell recognition. Furthermore, NK clones from different donors display a variable range of specificities in their recognition of infected target cells.


1993 ◽  
Vol 178 (4) ◽  
pp. 1321-1336 ◽  
Author(s):  
V Litwin ◽  
J Gumperz ◽  
P Parham ◽  
J H Phillips ◽  
L L Lanier

Prior studies using polyclonal populations of natural killer (NK) cells have revealed that expression of certain major histocompatibility complex (MHC) class I molecules on the membrane of normal and transformed hematopoietic target cells can prevent NK cell-mediated cytotoxicity. However, the extent of clonal heterogeneity within the NK cell population and the effect of self versus non-self MHC alleles has not been clearly established. In the present study, we have generated more than 200 independently derived human NK cell clones from four individuals of known human histocompatibility leukocyte antigens (HLA) type. NK clones were analyzed for cytolytic activity against MHC class I-deficient Epstein Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCL) stably transfected with several HLA-A, -B, or -C genes representing either self or non-self alleles. All NK clones killed the prototypic HLA-negative erythroleukemia K562 and most lysed the MHC class I-deficient C1R and 721.221 B-LCL. Analysis of the panel of HLA-A, -B, and -C transfectants supported the following general conclusions. (a) Whereas recent studies have suggested that HLA-C antigens may be preferentially recognized by NK cells, our findings indicate that 70% or more of all NK clones are able to recognize certain HLA-B alleles and many also recognize HLA-A alleles. Moreover, a single NK clone has the potential to recognize multiple alleles of HLA-A, HLA-B, and HLA-C antigens. Thus, HLA-C is not unique in conferring protection against NK lysis. (b) No simple patterns of HLA specificity emerged. Examination of a large number of NK clones from a single donor revealed overlapping, yet distinct, patterns of reactivity when a sufficiently broad panel of HLA transfectants was examined. (c) Both autologous and allogeneic HLA antigens were recognized by NK clones. There was neither evidence for deletion of NK clones reactive with self alleles nor any indication for an increased frequency of NK clones recognizing self alleles. (d) With only a few exceptions, protection conferred by transfection of HLA alleles into B-LCL was usually not absolute. Rather a continuum from essentially no protection for certain alleles (HLA-A*0201) to very striking protection for other alleles (HLA-B*5801), with a wide range of intermediate effects, was observed. (e) Whereas most NK clones retained a relatively stable HLA specificity, some NK clones demonstrated variable and heterogeneous activity over time. (f) NK cell recognition and specificity cannot be explained entirely by the presence or absence of HLA class I antigens on the target cell.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2747-2747 ◽  
Author(s):  
Xing Zhao ◽  
Narendiran Rajasekaran ◽  
Uwe Reusch ◽  
Jens-Peter Marschner ◽  
Martin Treder ◽  
...  

Abstract Introduction: AFM13 is a CD30/CD16A bispecific tetravalent TandAb antibody that recruits and activates NK-cells by specific binding to CD16A for targeted lysis of CD30+ tumor cells. Given promising clinical activity and safety profile of AFM13 and proof-of-mechanism demonstrating dependence on the immune response, potential synergy of AFM13 and checkpoint modulators was evaluated. Methods: Efficacy of AFM13 alone or in combination with anti-CTLA-4, anti-PD-1, or anti-CD137 antibodies was assessed by in vitro cytotoxicity assays with human PBMCs or enriched NK-cells and CD30+ target cells as well as patient-derived xenograft in vivo models with autologous PBMC. To evaluate NK-cell-mediated lysis of CD30+ lymphoma cell lines, 4 hour cytotoxicity assays were performed with PBMCs or enriched NK-cells as effector cells in the presence of suboptimal concentrations of AFM13 alone, and in combination with anti-CTLA-4, anti-PD-1, or anti-CD137 antibodies. For the in vivo model tumor fragments derived from surgical specimens of newly diagnosed patients with CD30+ Hodgkin Lymphoma were xenografted (PDX) in immuno-deficient mice. After 28 days mice were reconstituted with autologous patient-derived PBMC and treated with AFM13 alone and in combination with anti-CTLA-4, anti-PD-1, or anti-CD137 antibodies weekly for a total of three weeks. Tumor size, tumor-infiltrating human lymphocytes and intra-tumoral cytokines were evaluated on day 58. Results: AFM13 as a single agent at suboptimal concentrations induced effector-to-target cell-dependent lysis of CD30+ lymphoma cells up to 40% using enriched NK-cells as effector cells in a 4 hour in vitro assay. Immune-modulating antibodies alone mediated substantially lower lysis (<25%). However, the addition of anti-PD-1 or anti-CD137 to AFM13 strongly enhanced specific lysis up to 70%, whereas the addition of anti-CTLA-4 to AFM13 showed no beneficial effect. The most impressive increase of efficacy was observed when AFM13 was applied together with a combination of anti-PD-1 and anti-CD137. In vivo, reduction of tumor growth was observed when AFM13 and anti-PD-1 were used as single agents or when AFM13 was combined with anti-CD137. Synergy was most impressive in these PDX models for the combination of AFM13 and anti-PD-1 which led to a very strong reduction of tumor size. Of note, reduction of tumor growth was strongly correlated with infiltrating NK- and T-cells and intra-tumoral cytokines. Conclusions: The combination trials performed with companion intra-tumoral assessment of lymphocytes and cytokines may enhance the efficacy of AFM13 in patients. This may be explained by a potential cross-talk between NK-cells and T-cell which was enhanced when AFM13 was used in combination with checkpoint modulators. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2763-2763
Author(s):  
Xing Zhao ◽  
Narendiran Rajasekaran ◽  
Uwe Reusch ◽  
Michael Weichel ◽  
Kristina Ellwanger ◽  
...  

Abstract Introduction: CD19 is expressed by B cells from early development through differentiation into plasma cells, and represents a validated target for the development of therapeutic antibodies to treat B cell malignancies such as Non Hodgkin Lymphoma (NHL) and acute lymphoblastic leukemia (ALL). Different CD19-targeting T-cell engagers are investigated in clinical studies for the treatment of NHL or ALL, including Affimed's AFM11, a bispecific CD19/CD3 TandAb antibody, which is currently investigated in a phase 1 dose escalation study. Indeed, Affimed's bispecific tetravalent platform comprises not only T-cell engaging TandAbs with two binding sites for CD3, but also NK-cell recruiting TandAbs with two binding sites for CD16A. In the present study, Affimed's AFM11, was characterized and compared in in vitro and in vivo studies with the CD19/CD16A TandAb AFM12. Methods: Analogous to the CD19/CD3 TandAb AFM11, a bispecific tetravalent TandAb AFM12 was constructed with two binding sites for CD19 and two sites for CD16A. Both TandAbs were characterized side by side for their biophysical properties, binding affinities to CD19+ tumor target cells and to their respective effector cells by flow cytometry. Kinetics and dose-response characteristics were evaluated in in vitro cytotoxicity assays. Potency and efficacy of both TandAbs were compared on different CD19+ tumor target cell lines using primary human effector cells. To compare the efficacy of AFM11 and AFM12 a patient-derived tumor xenograft model was developed. Results: AFM12 mediated efficacious target cell lysis with a very fast on-set in vitro. Lysis induced by AFM11 was less efficacious (lower specific lysis than AFM12) but reproducibly more potent (lower EC50 value). In addition to the potency and efficacy of AFM11 and AFM12, different aspects of safety, such as effector cell activation in the presence and absence of target cells were investigated and will be described. Conclusions: Affimed's CD19/CD3 and CD19/CD16A TandAbs with identical anti-CD19 tumor-targeting domains but different effector cell-recruiting domains represent interesting molecules to study T-cell- or NK-cell-based immunotherapeutic approaches. The comparison of AFM11 and AFM12 demonstrated that AFM12-mediated lysis was fast and efficacious, whereas AFM11 showed a higher potency. In summary, the NK-cell recruiting TandAb AFM12 represents an alternative to T-cell recruiting molecules, as it may offer a different side effect profile, comparable to that of AFM13, the first NK-cell TandAb clinically investigated. Disclosures No relevant conflicts of interest to declare.


1991 ◽  
Vol 173 (4) ◽  
pp. 841-847 ◽  
Author(s):  
J D Davies ◽  
D H Wilson ◽  
D B Wilson

Here, we explore the conditions required for generating two different highly potent F1 antiparental killer cell populations to unusual antigens in rats. The first, L/DA anti-DA, has lytic specificity for two antigen systems: MTA, a mitochondrial antigen expressed on DA and DA Lewis (L) target cells restricted by RT1A class I molecules; and H, an antigen that maps to the class I-like RT1C region and is present only on parental target cells from donors homozygous at the major histocompatibility complex. The second killer population is generated in the reciprocal DA/L anti-DA combination and has lytic specificity only for the H antigen system. We show that the killer cells are T cells, and that generation of these F1 cytotoxic T lymphocytes (CTL) requires an in vivo priming step in which it is essential that the inoculated parental cells bear the relevant target antigens and possess alloreactivity for F1 host antigens. The requirement for alloreactivity and antigen on the same priming cell population suggests that these potent lytic responses depend on a situation akin to a hapten-carrier effect that bypasses otherwise ineffective helper responses by the host to these unusual antigens. Restimulation of F1 lymphocytes in culture is also necessary, requiring the presence of antigen on irradiated lymphoblast stimulator cells, but alloreactivity to responder cell antigens is not necessary; normal, nonactivated lymph node cells are completely ineffective as stimulators. For effective lysis, the target cells need not possess the potential for alloreactivity to responder F1 CTL. We also demonstrate in a preliminary way additional antigen systems defined by killer populations raised with other F1 antiparental strain combinations.


1999 ◽  
Vol 190 (7) ◽  
pp. 1005-1012 ◽  
Author(s):  
Mikael Eriksson ◽  
Guenther Leitz ◽  
Erik Fällman ◽  
Ove Axner ◽  
James C. Ryan ◽  
...  

Inhibitory receptors expressed on natural killer (NK) cells abrogate positive signals upon binding corresponding major histocompatibility complex (MHC) class I molecules on various target cells. By directly micromanipulating the effector–target cell encounter using an optical tweezers system which allowed temporal and spatial control, we demonstrate that Ly49–MHC class I interactions prevent characteristic cellular responses in NK cells upon binding to target cells. Furthermore, using this system, we directly demonstrate that an NK cell already bound to a resistant target cell may simultaneously bind and kill a susceptible target cell. Thus, although Ly49-mediated inhibitory signals can prevent many types of effector responses, they do not globally inhibit cellular function, but rather the inhibitory signal is spatially restricted towards resistant targets.


1986 ◽  
Vol 163 (1) ◽  
pp. 166-178 ◽  
Author(s):  
P Perez ◽  
R W Hoffman ◽  
J A Titus ◽  
D M Segal

Antibody heteroaggregates have been used to render human peripheral blood T cells lytic for specified targets. The heteroaggregates contain anti-T3 covalently linked to antibodies against nominal target cell antigens. Such heteroaggregates bind target cells directly to T3 molecules on effector cells and trigger target cell lysis. Freshly prepared human PBL, when coated with anti-T3-containing heteroaggregates, are lytic without further stimulation, although brief exposure to crude lymphokine-containing supernatants or recombinant IL-2, but not recombinant IFN-gamma, enhances the activity. The effector cells are T8+, and when fully stimulated, their lytic activity approaches that of some cloned CTL. When T cells are treated with heteroaggregate, washed, and incubated at 37 degrees C in medium not containing heteroaggregate, they retain activity for at least 24 h. The results of this study suggest a strategy in which heteroaggregate-coated T cells could be used in vivo to mount a lytic response against pathogenic cells such as tumor cells or virus-infected cells.


Sign in / Sign up

Export Citation Format

Share Document