scholarly journals KBF1 (p50 NF-kappa B homodimer) acts as a repressor of H-2Kb gene expression in metastatic tumor cells.

1993 ◽  
Vol 177 (6) ◽  
pp. 1651-1662 ◽  
Author(s):  
D Plaksin ◽  
P A Baeuerle ◽  
L Eisenbach

Downregulation of major histocompatibility complex class I expression is causally related to high malignancy and low immunogenicity of certain murine tumors. In this study, we have analyzed the roles of the nuclear factors KBF1/p50 and p65 in regulation of class I expression in high and low metastatic tumor cells. Low class I-expressing cells show at higher levels of KBF1/p50 and NF-kappa B (p50/p65) binding activity than high class I-expressing cells. However, an excess of KBF1 over NF-kappa B is observed in low expressing cells, while an excess of NF-kappa B over KBF1 is observed in high expressing cells. Stable transfection of a p65 expression vector into low class I-expressing cells activated H-2 transcription and cell surface expression, while stable transfection of p50 expression vector into high expressing cells suppressed H-2Kb transcription and cell surface expression. Our studies suggest that KBF1 has the potential of downregulating class I gene expression, whereas dimers containing the p65 subunit are activators of class I gene expression.

1994 ◽  
Vol 180 (2) ◽  
pp. 477-488 ◽  
Author(s):  
R Rotem-Yehudar ◽  
S Winograd ◽  
S Sela ◽  
J E Coligan ◽  
R Ehrlich

The expression of class I major histocompatibility complex antigens on the surface of cells transformed by adenovirus 12 (Ad12) is generally very low, and correlates with the high oncogenicity of this virus. In primary embryonal fibroblasts from transgenic mice that express both endogenous H-2 genes and a miniature swine class I gene (PD1), Ad12-mediated transformation results in suppression of cell surface expression of all class I antigens. Although class I mRNA levels of PD1 and H-2Db are similar to those in nonvirally transformed cells, recognition of newly synthesized class I molecules by a panel of monoclonal antibodies is impaired, presumably as a result of inefficient assembly and transport of the class I molecules. Class I expression can be partially induced by culturing cells at 26 degrees C, or by coculture of cells with class I binding peptides at 37 degrees C. Analysis of steady state mRNA levels of the TAP1 and TAP2 transporter genes for Ad12-transformed cell lines revealed that they both are significantly reduced, TAP2 by about 100-fold and TAP1 by 5-10-fold. Reconstitution of PD1 and H-2Db, but not H-2Kb, expression is achieved in an Ad12-transformed cell line by stable transfection with a TAP2, but not a TAP1, expression construct. From these data it may be concluded that suppressed expression of peptide transporter genes, especially TAP2, in Ad12-transformed cells inhibits cell surface expression of class I molecules. The failure to fully reconstitute H-2Db and H-2Kb expression indicates that additional factors are involved in controlling class I gene expression in Ad12-transformed cells. Nevertheless, these results suggest that suppression of peptide transporter genes might be an important mechanism whereby virus-transformed cells escape immune recognition in vivo.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1177
Author(s):  
Anita J. Zaitouna ◽  
Amanpreet Kaur ◽  
Malini Raghavan

Major histocompatibility class I (MHC-I) proteins mediate immunosurveillance against pathogens and cancers by presenting antigenic or mutated peptides to antigen receptors of CD8+ T cells and by engaging receptors of natural killer (NK) cells. In humans, MHC-I molecules are highly polymorphic. MHC-I variations permit the display of thousands of distinct peptides at the cell surface. Recent mass spectrometric studies have revealed unique and shared characteristics of the peptidomes of individual MHC-I variants. The cell surface expression of MHC-I–peptide complexes requires the functions of many intracellular assembly factors, including the transporter associated with antigen presentation (TAP), tapasin, calreticulin, ERp57, TAP-binding protein related (TAPBPR), endoplasmic reticulum aminopeptidases (ERAPs), and the proteasomes. Recent studies provide important insights into the structural features of these factors that govern MHC-I assembly as well as the mechanisms underlying peptide exchange. Conformational sensing of MHC-I molecules mediates the quality control of intracellular MHC-I assembly and contributes to immune recognition by CD8 at the cell surface. Recent studies also show that several MHC-I variants can follow unconventional assembly routes to the cell surface, conferring selective immune advantages that can be exploited for immunotherapy.


2007 ◽  
Vol 293 (1) ◽  
pp. E416-E420 ◽  
Author(s):  
Jean-Michel Petit ◽  
Anne Minello ◽  
Laurence Duvillard ◽  
Valérie Jooste ◽  
Serge Monier ◽  
...  

The LDL receptor (LDL-R) has been proposed as the viral receptor for Hepatitis C virus (HCV). This hypothesis has been based exclusively on in vitro studies. In human mononuclear cells, LDL-R gene expression has been demonstrated to be parallel and be coordinately regulated to gene expression in the human liver. The purpose of the current study was to determine the mononuclear cell surface expression of the LDL receptor in patients with HCV chronic infection according to viral load. Sixty-eight consecutive untreated chronic hepatitis C patients were studied to determine the mononuclear cell surface expression of the LDL-R. LDL-Rs were quantified at the surface of mononuclear cells in fresh blood samples taken after fasting using flow cytometry. LDL-R expression was significantly associated with LDL-cholesterol ( r = −0.25; P = 0.03) and HCV-viral load ( r = 0.37, P = 0.002). In multivariate analysis, the LDL-R expression was significantly associated with HCV viral load, whereas genotype, age, body mass index, and fibrosis were not. In conclusion, our data provided by a human study, suggest that the LDL-R may be one of the receptors implicated in HCV replication.


2001 ◽  
Vol 75 (12) ◽  
pp. 5663-5671 ◽  
Author(s):  
Frank Momburg ◽  
Arno Müllbacher ◽  
Mario Lobigs

ABSTRACT In contrast to many other viruses that escape the cellular immune response by downregulating major histocompatibility complex (MHC) class I molecules, flavivirus infection can upregulate their cell surface expression. Previously we have presented evidence that during flavivirus infection, peptide supply to the endoplasmic reticulum is increased (A. Müllbacher and M. Lobigs, Immunity 3:207–214, 1995). Here we show that during the early phase of infection with different flaviviruses, the transport activity of the peptide transporter associated with antigen processing (TAP) is augmented by up to 50%. TAP expression is unaltered during infection, and viral but not host macromolecular synthesis is required for enhanced peptide transport. This study is the first demonstration of transient enhancement of TAP-dependent peptide import into the lumen of the endoplasmic reticulum as a consequence of a viral infection. We suggest that the increased supply of peptides for assembly with MHC class I molecules in flavivirus-infected cells accounts for the upregulation of MHC class I cell surface expression with the biological consequence of viral evasion of natural killer cell recognition.


2003 ◽  
Vol 77 (21) ◽  
pp. 11644-11650 ◽  
Author(s):  
Keith D. Tardif ◽  
Aleem Siddiqui

ABSTRACT The hepatitis C virus (HCV) causes chronic hepatitis in most infected individuals by evading host immune defenses. In this investigation, we show that HCV-infected cells may go undetected in the immune system by suppressing major histocompatibility complex (MHC) class I antigen presentation to cytotoxic T lymphocytes. Cells expressing HCV subgenomic replicons have lower MHC class I cell surface expression. This is due to reduced levels of properly folded MHC class I molecules. HCV replicons induce endoplasmic reticulum (ER) stress (K. Tardif, K. Mori, and A. Siddiqui, J. Virol. 76:7453-7459, 2002), which results from a decline in protein glycosylation. Decreasing protein glycosylation can disrupt protein folding, preventing the assembly of MHC class I molecules. This results in the accumulation of unfolded MHC class I. Therefore, the persistence and pathogenesis of HCV may depend upon the ER stress-mediated interference of MHC class I assembly and cell surface expression.


Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3232-3241 ◽  
Author(s):  
Yan-Ting Shiu ◽  
Mark M. Udden ◽  
Larry V. McIntire

Sickle cell anemia is characterized by periodic vasoocclusive crises. Increased adhesion of sickle erythrocytes to vascular endothelium is a possible contributing factor to vasoocclusion. This study determined the effect of sickle erythrocyte perfusion at a venous shear stress level (1 dyne/cm2) on endothelial cell (EC) monolayers. Sickle erythrocytes up-regulated intercellular adhesion molecule-1 (ICAM-1) gene expression in cultured human endothelial cells. This was accompanied by increased cell surface expression of ICAM-1 and also elevated release of soluble ICAM-1 molecules. Expression of vascular cell adhesion molecule-1 (VCAM-1) messenger RNA (mRNA) was also strikingly elevated in cultured ECs after exposure to sickle cell perfusion, although increases in membrane-bound and soluble VCAM-1 levels were small. The presence of cytokine interleukin-1β in the perfusion system enhanced the production of ICAM-1 and VCAM-1 mRNA, cell surface expression, and the concentrations of circulating forms. This is the first demonstration that sickle erythrocytes have direct effects on gene regulation in cultured human ECs under well-defined flow environments. The results suggest that perfusion with sickle erythrocytes increases the expression of cell adhesion molecules on ECs and stimulates the release of soluble cell adhesion molecules, which may serve as indicators of injury and/or activation of endothelial cells. The interactions between sickle red blood flow, inflammatory cytokines, and vascular adhesion events may render sickle cell disease patients vulnerable to vasoocclusive crises.


Sign in / Sign up

Export Citation Format

Share Document