scholarly journals Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production.

1993 ◽  
Vol 178 (6) ◽  
pp. 2185-2192 ◽  
Author(s):  
G J Freeman ◽  
F Borriello ◽  
R J Hodes ◽  
H Reiser ◽  
J G Gribben ◽  
...  

The B7-1 molecule, expressed on antigen presenting cells (APC), provides a crucial costimulatory signal for T cell activation. Recent studies demonstrate the existence of alternative, non-B7-1 CTLA4 counter-receptors in mice and humans. Here, we describe the molecular cloning and demonstrate costimulatory function of the murine B7-2 (mB7-2) gene. Murine B7-2 cDNA encodes a member of the Ig supergene family that binds CTLA4-Ig and stains with the GL1 but not anti-mB7-1 mAb. Murine B7-2 costimulates the proliferation and interleukin 2 production of CD4+ T cells and this costimulation can be inhibited by either CTLA4-Ig or GL1 mAb. Identification of the B7-2 molecule will permit further manipulation of the B7:CD28/CTLA4 costimulatory pathway which has been shown to be involved in the prevention of tolerance, induction of tumor immunity, and most recently, in the pathogenesis of autoimmunity.


1985 ◽  
Vol 161 (6) ◽  
pp. 1513-1524 ◽  
Author(s):  
T Hara ◽  
S M Fu ◽  
J A Hansen

In previous studies (17-21), monoclonal antibody (mAb) 9.3 has been shown to react with a major population of human T cells, which include T4+ helper/inducer T cells and T8+ cytotoxic T cells. In this investigation, mAb 9.3 was shown to precipitate a disulfide-bonded dimer of a 44 kD polypeptide. Comodulation experiments showed that this molecule is not linked to T3/Ti or T11 antigens. mAb 9.3 was capable of inducing T cell proliferation in the presence of 12-o-tetradecanoyl phorbol-13-acetate (TPA). This effect was monocyte-independent. T cell activation with mAb 9.3 and TPA was associated with increases in interleukin 2(IL-2) receptor expression and IL-2 secretion. mAb 9.3 did not activate T cells, even with the addition of IL-1 or IL-2. Modulation of the T3 complex did not abolish mAb 9.3-induced T cell proliferation in the presence of TPA. These results suggest that the 9.3 antigen may serve as a receptor for an activation pathway restricted to a T cell subset.



1993 ◽  
Vol 90 (23) ◽  
pp. 11054-11058 ◽  
Author(s):  
D J Lenschow ◽  
G H Su ◽  
L A Zuckerman ◽  
N Nabavi ◽  
C L Jellis ◽  
...  

Effective T-cell activation requires antigen/major histocompatibility complex engagement by the T-cell receptor complex in concert with one or more costimulatory molecules. Recent studies have suggested that the B7 molecule, expressed on most antigen presenting cells, functions as a costimulatory molecule through its interaction with CD28 on T cells. Blocking the CD28/B7 interaction with CTLA4Ig inhibits T-cell activation in vitro and induces unresponsiveness. We demonstrate that another molecule(s), termed B7-2, is expressed constitutively on dendritic cells, is differentially regulated on B cells, and costimulates naive T cells responding to alloantigen. B7-2 is up-regulated by lipopolysaccharide in < 6 hr and is maximally expressed on the majority of B cells by 24 hr. In contrast, B7 is detected only on a subset of activated B cells late (48 hr) after stimulation. In addition, Con A directly induces B7-2 but not B7 expression on B cells. Finally, although both anti-B7 monoclonal antibodies and CTLA4Ig blocked T-cell proliferation to antigen-expressing B7 transfectants, only CTLA4Ig had any significant inhibitory effect on T-cell proliferation to antigens expressed on natural antigen presenting cells, such as dendritic cells. Thus, B7 is not the only costimulatory molecule capable of initiating T-cell responses since a second ligand, B7-2, can provide a necessary second signal for T-cell activation.



1991 ◽  
Vol 173 (3) ◽  
pp. 721-730 ◽  
Author(s):  
P S Linsley ◽  
W Brady ◽  
L Grosmaire ◽  
A Aruffo ◽  
N K Damle ◽  
...  

A successful immune response requires intercellular contact between T and B lymphocytes. We recently showed that CD28, a T cell surface protein that regulates an activation pathway, could mediate intercellular adhesion with activated B cells by interaction with the B7 antigen. Here we show that CD28 is the primary receptor for B7 on activated peripheral blood T cells, that CD28 binds to B7 in the absence of other accessory molecules, and that interaction between CD28 and B7 is costimulatory for T cell activation. To characterize the binding of CD28 to B7, we have produced genetic fusions of the extracellular portions of B7 and CD28, and immunoglobulin (Ig) C gamma 1 chains. 125I-labeled B7 Ig bound to CD28-transfected Chinese hamster ovary (CHO) cells, and to immobilized CD28 Ig with a Kd approximately 200 nM. B7 Ig also inhibited CD28-mediated cellular adhesion. The function of CD28-B7 interactions during T cell activation was investigated with soluble fusion proteins and with B7-transfected CHO cells. Immobilized B7 Ig and B7+ CHO cells costimulated T cell proliferation. Stimulation of T cells with B7+ CHO cells also specifically increased levels of interleukin 2 transcripts. These results demonstrate that the CD28 signaling pathway could be activated by B7, resulting in increased T cell cytokine production and T cell proliferation. Cellular interactions mediated by B7 and CD28 may represent an important component of the functional interactions between T and B lymphoid cells.



1999 ◽  
Vol 190 (12) ◽  
pp. 1891-1896 ◽  
Author(s):  
Norman J. Kennedy ◽  
Takao Kataoka ◽  
Jürg Tschopp ◽  
Ralph C. Budd

Triggering of Fas (CD95) by its ligand (FasL) rapidly induces cell death via recruitment of the adaptor protein Fas-associated death domain (FADD), resulting in activation of a caspase cascade. It was thus surprising that T lymphocytes deficient in FADD were reported recently to be not only resistant to FasL-mediated apoptosis, but also defective in their proliferative capacity. This finding suggested potentially dual roles of cell growth and death for Fas and possibly other death receptors. We report here that CD3-induced proliferation and interleukin 2 production by human T cells are blocked by inhibitors of caspase activity. This is paralleled by rapid cleavage of caspase-8 after CD3 stimulation, but no detectable processing of caspase-3 during the same interval. The caspase contribution to T cell activation may occur via TCR-mediated upregulation of FasL, as Fas-Fc blocked T cell proliferation, whereas soluble FasL augmented CD3-induced proliferation. These findings extend the role of death receptors to the promotion of T cell growth in a caspase-dependent manner.



2005 ◽  
Vol 73 (4) ◽  
pp. 2184-2189 ◽  
Author(s):  
Tom Li Stephen ◽  
Marcus Niemeyer ◽  
Arthur O. Tzianabos ◽  
Martin Kroenke ◽  
Dennis L. Kasper ◽  
...  

ABSTRACT Carbohydrates have been thought to stimulate immune responses independently of T cells; however, zwitterionic polysaccharides (ZPSs) from the capsules of some bacteria elicit potent CD4+-T-cell responses in vivo and in vitro. We demonstrated that HLA-DR on professional antigen-presenting cells (APCs) is required for ZPS-induced T-cell proliferation in vitro (15). Recently, it was shown that ZPSs are processed to low-molecular-weight carbohydrates by a nitric oxide-mediated mechanism in endosomes and locate in the major histocompatibility complex class II pathway (5, 15). The effect of the ZPS-mediated expression of HLA-DR and costimulatory molecules on the APC and T-cell engagement and subsequent T-cell activation has not been elucidated. Herein, we report that ZPS-mediated induction of HLA-DR-surface expression and T-cell proliferation are maximally enhanced after incubation of APCs for 8 h with ZPS. Treatment of APCs with bafilomycin A inhibits the up-regulation of ZPS-mediated HLA-DR surface expression and leads to inhibition of T-cell proliferation. Monoclonal antibodies (MAbs) to the costimulatory molecules B7-2 and CD40L specifically block ZPS-mediated T-cell activation, while a MAb to B7-1 does not. Surface expression of B7-2 and B7-1 but not of CD40 is maximally enhanced at 8 to 16 h of treatment of APCs with ZPS. The results demonstrate that the cellular immune response to ZPS depends on the translocation of HLA-DR to the cell surface and requires costimulation via B7-2 and CD40 on activated APCs. The implication is that activation of ZPS-specific T cells requires an orchestrated arrangement of both presenting and costimulatory molecules to form an immunological synapse.



1997 ◽  
Vol 186 (10) ◽  
pp. 1787-1791 ◽  
Author(s):  
Pan Zheng ◽  
Yang Liu

It has been proposed that some bystander T cell activation may in fact be due to T cell antigen receptor (TCR) cross-reactivity that is too low to be detected by the effector cytotoxic T lymphocyte (CTL). However, this hypothesis is not supported by direct evidence since no TCR ligand is known to induce T cell proliferation and differentiation without being recognized by the effector CTL. Here we report that transgenic T cells expressing a T cell receptor to influenza virus A/NT/68 nucleoprotein (NP) 366-374:Db complexes clonally expand and become effector CTLs in response to homologous peptides from either A/PR8/34 (H1N1), A/AA/60 (H2N2), or A/NT/68 (H3N2). However, the effector T cells induced by each of the three peptides kill target cells pulsed with NP peptides from the H3N2 and H2N2 viruses, but not from the H1N1 virus. Thus, NP366–374 from influenza virus H1N1 is the first TCR ligand that can induce T cell proliferation and differentiation without being recognized by CTLs. Since induction of T cell proliferation was mediated by antigen-presenting cells that express costimulatory molecules such as B7, we investigated if cytolysis of H1N1 NP peptide–pulsed targets can be restored by expressing B7-1 on the target cells. Our results revealed that this is the case. These data demonstrated that costimulatory molecule B7 modulates antigen specificity of CTLs, and provides a missing link that explains some of the bystander T cell activation.



Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Mengyao Jin ◽  
Peng Liu

Introduction: Dendritic cells (DCs) that are known as professional antigen-presenting cells have been found to pre-locate in non-inflammatory arterial wall and increasingly accumulate during atherosclerosis progression. Previous findings suggested that residential DCs in the intima are responsible for capturing modified lipids and forming foam cells during the initiation of atherosclerosis. Hypothesis: DC accumulation and enhanced DC-T cell interaction play a critical role in the initiation of atherosclerosis. Methods: We measured plaque formation, vascular DC accumulation and antigen-specific T cell proliferation mediated by isolated aortic cells in ApoE-/- mice, as well as DTR-CD11c/ApoE-/- or DTR-CD11b/ApoE-/- mice for conditional depletion of DCs or macrophages, respectively. A brief high-fat diet for 10 days was used as a model of initial atherosclerosis. Results: In addition to increased intimal DC accumulation and plaque formation in aortic roots, 10 days of HFD induced T cell infiltration in ApoE-/- mice, compared to those without HFD as the control. Isolated aortic cells from mice with 10-day HFD showed stronger capability in inducing antigen-specific T cell proliferation, compare to the control (HFD: 3.14±0.71%; no HFD: 1.56±0.36%; p=0.022). Single diphtheria toxin (DT) injection at day 1 yielded approximately 50% decrease in intimal DC accumulation, as well as 60% attenuation in plaque formation in DTR-CD11c/ApoE-/- mice after 10-day HFD. Capability of stimulating antigen-specific T cell proliferation was also impaired in aortic cells from DC-depleted mice (DT-treated: 1.62±0.30%; PBS-treated: 3.04±0.59%; p= 0.004), along with reduction in indirect conduction of T cell activation. In contrast, no significant changes were found in plaque formation and DC accumulation in DT-injected DTR-CD11b/ApoE-/- mice after 10 days of HFD, compared to control group. Furthermore, depletion of CD11b+ macrophages in either aortas or spleens didn’t alter capability of inducing antigen-specific T cell proliferation in DT-injected mice. Conclusions: These results suggested that vascular DCs rather than macrophages play a more important role in T cell activation and initiation of atherosclerosis.



2020 ◽  
Vol 11 ◽  
Author(s):  
Christian Binder ◽  
Felix Sellberg ◽  
Filip Cvetkovski ◽  
Erik Berglund ◽  
David Berglund

Antibodies are commonly used in organ transplant induction therapy and to treat autoimmune disorders. The effects of some biologics on the human immune system remain incompletely characterized and a deeper understanding of their mechanisms of action may provide useful insights for their clinical application. The goal of this study was to contrast the mechanistic properties of siplizumab with Alemtuzumab and rabbit Anti-Thymocyte Globulin (rATG). Mechanistic assay systems investigating antibody-dependent cell-mediated cytotoxicity, antibody-dependent cell phagocytosis and complement-dependent cytotoxicity were used to characterize siplizumab. Further, functional effects of siplizumab, Alemtuzumab, and rATG were investigated in allogeneic mixed lymphocyte reaction. Changes in T cell activation, T cell proliferation and frequency of naïve T cells, memory T cells and regulatory T cells induced by siplizumab, Alemtuzumab and rATG in allogeneic mixed lymphocyte reaction were assessed via flow cytometry. Siplizumab depleted T cells, decreased T cell activation, inhibited T cell proliferation and enriched naïve and bona fide regulatory T cells. Neither Alemtuzumab nor rATG induced the same combination of functional effects. The results presented in this study should be used for further in vitro and in vivo investigations that guide the clinical use of immune modulatory biologics.



2008 ◽  
Vol 19 (2) ◽  
pp. 701-710 ◽  
Author(s):  
Isabel María Olazabal ◽  
Noa Beatriz Martín-Cofreces ◽  
María Mittelbrunn ◽  
Gloria Martínez del Hoyo ◽  
Balbino Alarcón ◽  
...  

The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKCθ. At the same doses of loaded antigen (1 μM), “phagocytic” macrophages were more efficient than peptide-antigen–loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3–30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy.



Sign in / Sign up

Export Citation Format

Share Document