scholarly journals Transient increase in circulating gamma/delta T cells during Plasmodium vivax malarial paroxysms.

1994 ◽  
Vol 179 (1) ◽  
pp. 311-315 ◽  
Author(s):  
M K Perera ◽  
R Carter ◽  
R Goonewardene ◽  
K N Mendis

The percentage of peripheral blood mononuclear cells (PBMC) bearing the CD3+ phenotype and the alpha/beta and gamma/delta T cell receptors (TCR) in PBMC were examined in Plasmodium vivax malaria patients and convalescents. The cells were labeled with monoclonal antibodies, stained with either fluorescence or phycoerythrin, and examined by ultraviolet (UV) microscopy. A highly significant increase in both the proportion and the absolute numbers of gamma/delta T cells (p < 0.005 and < 0.001, respectively, Student's t test) was observed in nonimmune P. vivax patients during clinical paroxysms compared to nonmalarial controls. These T cells, which normally constitute not more than 3-5% of PBMC, constituted < or = to 30% of PBMC during paroxysms in these nonimmune patients in whom the clinical symptoms were severe. A less significant increase of gamma/delta T cells were also observed in these nonimmune patients during infection, between paroxysms and during convalescence. In contrast, in an age-matched group of semi-immune patients resident in a malaria-endemic region of the country, in whom the clinical disease was comparatively mild, there was no increase in gamma/delta T cells either during infection, even during paroxysms, or convalescence. The severity of disease symptoms in patients as measured by a clinical score correlated positively with the proportion of gamma/delta T cells in peripheral blood (r = 0.53, p < 0.01), the most significant correlation being found between the prevalence and severity of gastrointestinal symptoms, nausea, anorexia, and vomiting, and the proportion of gamma/delta T cells (r = 0.49, p = 0.002). These findings suggest that gamma/delta T cells have a role to play in the pathogenesis of malaria, possibly in the general constitutional disturbances and particularly in gastrointestinal pathology in malaria.

Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1875-1881 ◽  
Author(s):  
D van der Harst ◽  
A Brand ◽  
SA van Luxemburg-Heijs ◽  
YM Kooij-Winkelaar ◽  
FE Zwaan ◽  
...  

Before and after bone marrow transplantation (BMT) for hematologic malignancies, peripheral blood mononuclear cells from 10 patients were obtained. The relative and absolute numbers of CD3+ T-cell receptor gamma delta+ (TCR gamma delta+) cells, as defined by the reaction of monoclonal antibodies (MoAbs) directed against CD3 and the TCR gamma delta (anti-TCR gamma delta-1), were determined. Before transplantation, eight of nine patients tested had less than 10% CD3+TCR gamma delta+ cells. Consistent increased numbers of gamma delta cells up to eightfold the pretransplant level can be seen in four of nine patients tested within the first 4 months after BMT. The large majority of early posttransplant gamma delta and alpha beta T cells express the CD45RO antigen, which is usually expressed on “memory” cells only. The V-region usage of the TCR gamma delta+ T cells was analyzed using fresh mononuclear cells and MoAbs against known V gamma and V delta regions. For more detailed analysis, CD3+TCR gamma delta+ cells were sorted and cultured in bulk and cloned. Using fresh cells and bulk cultures, mainly V gamma 9+V delta 1-V delta 2+ cells were found during engraftment. Only after 6 weeks post-BMT, V gamma 9-V delta 1+V delta 2- cells appear. Analysis of the V gamma and V delta usage at the clonal level confirmed the observation that early after BMT only V gamma 9+V delta 2+ cells are present, whereas gamma delta T- cell clones expressing other gamma delta TCR phenotypes can only be detected 4 to 6 weeks post-BMT. The predominance of V gamma 9+ cells during early engraftment could be explained by several mechanisms: (A) sequential rearrangements during T-cell development, leading to an early wave of V gamma 9+ cells, or (B) selective outgrowth of preexisting V gamma 9+V delta 2+CD45RO+ TCR gamma delta cells in the bone marrow graft, possibly as a result of antigen driven expansion due to exposure to environmental antigens.


2017 ◽  
Author(s):  
Yan Liu ◽  
Christopher Bailey ◽  
Christopher Lazarski ◽  
Chun-shu Wong ◽  
Pan Zheng ◽  
...  

AbstractDrug development effort against GVHD is hampered by the lack of clinically relevant humanized animal models for preclinical testing. Current humanized GVHD models rely on adoptive transfer of a high number of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice. Here we report a novel humanized GVHD model by transplanting a small number of human BM cells into newborn NOD. SCID IL2ry0 (NSG) mice. Transplantation of human BM cells (BMT) causes acute GVHD, with lethality between 15 to 60 days. Pervasive human T-cell infiltration into multiple organs, including lung, intestine, skin, kidney, liver, and stomach, was observed in all mice analyzed. Surprisingly, the human T cells express high levels of hypoxia inducible factor 1α (HIF1α) protein even under normoxic environment. Administration of Echinomycin, a potent inhibitor for HIF1α, rapidly ablated HIF1α protein in T cells and gradually reduced the frequency of human cells in the peripheral blood and target organs. Echinomycin provides a sustained therapeutic effect, as demonstrated by dramatic reduction of clinical symptoms, pathology score and by doubling of the median life span of the chimeric mice. Our results reveal a critical role of HIF1α in GVHD and demonstrate that HIF1α inhibitors such as Echinomycin should be explored for clinical drug development against GVHD.


1990 ◽  
Vol 172 (6) ◽  
pp. 1877-1880 ◽  
Author(s):  
M Nakata ◽  
M J Smyth ◽  
Y Norihisa ◽  
A Kawasaki ◽  
Y Shinkai ◽  
...  

The cytotoxic activity and pore-forming protein (PFP) expression of human peripheral blood (PB) gamma/delta T cells were examined. Fresh gamma/delta T cells isolated from PB lymphocytes by fluorescence-activated cell sorting exhibited a substantial natural killer-like cytotoxic activity against K562 target cells and had a high cytotoxic potential triggered by anti-CD3 monoclonal antibody (mAb) against P815 target cells bearing Fc gamma R. Immunocytochemical staining with an anti-PFP mAb revealed that virtually all PB gamma/delta T cells are granular lymphocytes with abundant PFP in their cytoplasmic granules. Constitutive expression of PFP in PB gamma/delta T cells was also demonstrated by Northern blot analysis. These observations support the proposed role of gamma/delta T cells in cytolytic immune surveillance in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3893-3893
Author(s):  
Francesca Fiore ◽  
Barbara Castella ◽  
Barbara Nuschak ◽  
Raffaello Bertieri ◽  
Sara Mariani ◽  
...  

Abstract Vgamma9/Vdelta2 (gamma/delta) T cells represent the major subset of unconventional T cells circulating in the peripheral blood. Gamma/delta T cells play a major role in immune defenses against microbes, stressed cells and tumor cells. This property is based on their capability to naturally recognize phosphoantigens (pAgs), which are produced via the mevalonate (Mev) or the DOXP pathway in mammalian and nonmammalian cells, and induced self-ligands, which are de novo expressed or upregulated on the surface of stressed or tumor cells. Interestingly, gamma/delta T cells can also be activated by aminobisphosphonates (ABP)-treated monocytes. We have previously shown that ABP specifically target the Mev pathway of monocytes and induce the accumulation of phosphorylated Mev metabolites naturally recognized by gamma/delta T cells. The aim of this work was to determine whether ABP-treated dendritic cells (DC) can also activate gamma/delta T cells and whether this activation, if any, is detrimental or beneficial to the generation of antigen (Ag)-specific MHC-restricted immune responses mediated by conventional alpha/beta T cells. To this end, we have generated highly purified immature (iDC) and mature DC (mDC) from peripheral blood monocytes of healthy donors and incubated with zoledronic acid (Zol) for 24 hours. Zol is the most potent ABP currently available for clinical use. Zol treatment did not affect the phenotype and immunostimulatory properties of iDC and mDC. Zol-treated iDC and mDC induced a rapid and vigorous expansion of central memory and effector memory gamma/delta T cells. Zol-treated iDC were more potent inducers of gamma/delta T-cell activation than mDC and monocytes. Activated gamma/delta T cells displayed antitumor activity and expressed on the cell surface the appropriate antigen repertoire to target secondary lymphoid organs and exert costimulatory activity on conventional alpha/beta T cells. Indeed, an in vitro model showed that antigen-specific MHC-restricted immune responses againt the influenza matrix peptide were significantly improved by the concurrent activation of gamma/delta T cells. This is the first report showing that: 1) DC can simultaneously be primed to activate both gamma/delta and alpha/beta T cells; 2) the former act as cellular adjuvants for the development of adaptive immune responses. In conclusion, large numbers of gamma/delta T cells with effector and costimulatory activities can rapidly be generated by Zol-treated iDC/mDC. This strategy is worth of further investigation to improve adoptive cell therapy and vaccine interventions against tumors and infections.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1875-1881 ◽  
Author(s):  
D van der Harst ◽  
A Brand ◽  
SA van Luxemburg-Heijs ◽  
YM Kooij-Winkelaar ◽  
FE Zwaan ◽  
...  

Abstract Before and after bone marrow transplantation (BMT) for hematologic malignancies, peripheral blood mononuclear cells from 10 patients were obtained. The relative and absolute numbers of CD3+ T-cell receptor gamma delta+ (TCR gamma delta+) cells, as defined by the reaction of monoclonal antibodies (MoAbs) directed against CD3 and the TCR gamma delta (anti-TCR gamma delta-1), were determined. Before transplantation, eight of nine patients tested had less than 10% CD3+TCR gamma delta+ cells. Consistent increased numbers of gamma delta cells up to eightfold the pretransplant level can be seen in four of nine patients tested within the first 4 months after BMT. The large majority of early posttransplant gamma delta and alpha beta T cells express the CD45RO antigen, which is usually expressed on “memory” cells only. The V-region usage of the TCR gamma delta+ T cells was analyzed using fresh mononuclear cells and MoAbs against known V gamma and V delta regions. For more detailed analysis, CD3+TCR gamma delta+ cells were sorted and cultured in bulk and cloned. Using fresh cells and bulk cultures, mainly V gamma 9+V delta 1-V delta 2+ cells were found during engraftment. Only after 6 weeks post-BMT, V gamma 9-V delta 1+V delta 2- cells appear. Analysis of the V gamma and V delta usage at the clonal level confirmed the observation that early after BMT only V gamma 9+V delta 2+ cells are present, whereas gamma delta T- cell clones expressing other gamma delta TCR phenotypes can only be detected 4 to 6 weeks post-BMT. The predominance of V gamma 9+ cells during early engraftment could be explained by several mechanisms: (A) sequential rearrangements during T-cell development, leading to an early wave of V gamma 9+ cells, or (B) selective outgrowth of preexisting V gamma 9+V delta 2+CD45RO+ TCR gamma delta cells in the bone marrow graft, possibly as a result of antigen driven expansion due to exposure to environmental antigens.


1997 ◽  
Vol 56 ◽  
pp. 313
Author(s):  
O. Kowal-Bielecka ◽  
K. Bernacka ◽  
A. Kuryliszyn-Moskal ◽  
R. Mróz ◽  
E. Kowal

Author(s):  
Makoto Kondo ◽  
Takamichi Izumi ◽  
Nao Fujieda ◽  
Atsushi Kondo ◽  
Takeharu Morishita ◽  
...  

1990 ◽  
Vol 171 (5) ◽  
pp. 1597-1612 ◽  
Author(s):  
C M Parker ◽  
V Groh ◽  
H Band ◽  
S A Porcelli ◽  
C Morita ◽  
...  

The germline repertoire of variable genes for the TCR-gamma/delta is limited. This, together with the availability of several V delta-specific and a C delta-specific mAbs, has made it possible to assess differences in the TCR-gamma/delta repertoire in man. TCR-gamma/delta cells expressing particular V gene segments have been previously shown to be localized in different anatomical sites. In this study, analysis of TCR-gamma/delta V gene segment usage performed on subjects from the time of birth through adulthood revealed striking age-related changes in the TCR-gamma/delta repertoire in peripheral blood. V delta 1+ gamma/delta T cells predominated in thymus as well as in peripheral blood at birth and then persisted as a relatively constant proportion of CD3+ PBL. However, V delta 2+ gamma/delta T cells that constitute a small proportion of the CD3+ cells in thymus and in peripheral blood at birth, then expand and account for the major population of gamma/delta T cells in PBL in adults. No parallel postnatal expansion of V delta 2+ cells in the thymus was observed, even when paired thymus-peripheral blood specimens were obtained on subjects between the ages of 3 d and 8 yr. The subset of V delta 2+ lymphocytes that was expanded in peripheral blood expressed high levels of CD45RO suggesting prior activation of these cells, consistent with the possibility that their expansion might have resulted from exposure to foreign antigens or superantigens. In contrast, V delta 1+ T cells in PBL showed no comparable increase in relative numbers and were either negative or expressed only low levels of CD45RO. Consistent with evidence for extrathymic peripheral expansion of selective TCR-gamma/delta subsets, no link between MHC haplotype and differences in the TCR-gamma/delta V gene usage between individuals was apparent, and identical twins displayed TCR-gamma/delta variable gene segment phenotypes that were strikingly different from one another. The elements that determine the TCR-gamma/delta repertoire in individuals are not known. It is possible that both thymic selection and extrathymic factors may influence the peripheral repertoire. Recently, TCR-gamma/delta+ lymphocytes have been shown to expand markedly in peripheral lymphoid tissues and infectious lesions in response to mycobacterial antigens, and a correlation between mycobacterial responses and TCR-gamma/delta V gene usage has been shown in mice. The data presented here demonstrated peripheral age-related changes in the gamma/delta repertoire and point to the importance of extrathymic expansion of specific gamma/delta subsets in generating the human TCR-gamma/delta repertoire.


Sign in / Sign up

Export Citation Format

Share Document