scholarly journals Selective anergy of V beta 8+ T cells in human immunodeficiency virus-infected individuals.

1994 ◽  
Vol 179 (2) ◽  
pp. 413-424 ◽  
Author(s):  
G Dadaglio ◽  
S Garcia ◽  
L Montagnier ◽  
M L Gougeon

We have analyzed the V beta usage by CD4+ and CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals in response to an in vitro stimulation with the superantigenic erythrogenic toxin A (ETA) of Streptococcus pyogenes. ETA amplifies specifically CD4+ and CD8+ T cells from control donors expressing the V beta 8 and the V beta 12 elements. When peripheral T cells from asymptomatic HIV-infected individuals were stimulated with ETA, there was a complete lack of activation of the V beta 8+ T cell subset, whereas the V beta 12+ T cell subset responded normally to the superantigen. This V beta-specific anergy, which was also observed in response to staphylococcal enterotoxin E (SEE), affected both CD4+ and CD8+ T cells and represented an intrinsic functional defect rather than a specific lack of response to bacterial superantigens since it was also observed after a stimulation with V beta 8 monoclonal antibodies. The V beta 8 anergic T cells did not express interleukin 2 receptors (IL-2Rs) and failed to proliferate in response to exogenous IL-2 or IL-4, suggesting that this anergy was not a reversible process, at least by the use of these cytokines. The unresponsiveness of the V beta 8 T cell subset is frequent since it was found in 56% of the patients studied, and comparison of the clinical status of responder vs. anergic patients indicated that the only known common factor between them was HIV infection. In addition, it is noteworthy that the anergy of the V beta 8 subset may be a very early phenomenon since it was found in a patient at Centers for Disease Control stage I of the disease. These data provide evidence that a dominant superantigen may be involved in the course of HIV infection and that the contribution of HIV has to be considered.

1995 ◽  
Vol 181 (1) ◽  
pp. 423-428 ◽  
Author(s):  
R Paganelli ◽  
E Scala ◽  
I J Ansotegui ◽  
C M Ausiello ◽  
E Halapi ◽  
...  

Increased levels of serum IgE and eosinophilia have been described in human immunodeficiency virus (HIV) infection, almost exclusively in patients with CD4+ cell count < 200 cells/microliters. IgE production is regulated by CD4+ T helper type 2 (Th-2) lymphocytes, producing interleukin 4 (IL-4) and expressing a ligand for the B cell-specific CD40 molecule (CD40 ligand [L]). A shift to a Th-2-like pattern of cytokine secretion has been postulated to be associated with progression toward acquired immunodeficiency syndrome (AIDS). We studied three AIDS patients with very high levels of IgE and almost complete depletion of CD4+ lymphocytes, suggesting that IgE synthesis could not be driven by CD4+ cells. IgE in vitro synthesis by cells from such patients was, however, inhibited by anti-IL-4. We show that both CD8+ T cell lines and the majority of CD8+ T cells clones derived from these patients produce IL-4, IL-5, and IL-6 in half of the cases together with interferon gamma (IFN-gamma). 44% of CD8+ T cell clones expressed a CD40L, and the supernatants of the clones were capable of inducing IgE synthesis by normal B cells costimulated with anti-CD40. CD8+ T cells in these patients therefore functionally mimic Th-2 type cells and may account for hyper-IgE and eosinophilia in the absence of CD4+ cells. The presence of such CD8+ cells may also provide a source of IL-4 directing the development of predominant Th-2 responses in HIV infection.


Blood ◽  
1995 ◽  
Vol 86 (4) ◽  
pp. 1400-1407 ◽  
Author(s):  
RP Lauener ◽  
S Huttner ◽  
M Buisson ◽  
JP Hossle ◽  
M Albisetti ◽  
...  

One mechanism proposed to play a role in T-cell depletion in human immunodeficiency virus (HIV) infection is apoptosis (activation-induced cell death). We assessed whether apoptosis is related to activation of T cells in vivo and its possible triggers. DNA was extracted from peripheral blood mononuclear cells (PBMC) taken from 16 vertically HIV- infected children and 9 HIV-negative children born to HIV-positive mothers (controls) and tested by agarose gel electrophoresis for the presence of DNA fragments specific for apoptosis. Signs of apoptosis were found on in vitro culture of PBMC from 12 of 16 HIV-infected children, but not in PBMC from the nine controls. Eleven of the 12 HIV- infected children with apoptosis showed an elevated (> 15%) proportion of CD3+/HLA-DR+ cells. This was due to an increased proportion of CD8+/HLA-DR+ cells, as shown in 7 of 7 further tested patients. In none of the probands an increased (> 5%) proportion of IL-2 receptor expressing CD3+ cells was found. T cells undergoing apoptosis were preferentially of the CD8+ phenotype. Expansion of circulating CD8+/interleukin-2 receptor (IL-2R)-/HLA-DR+ T cells is known to occur during active infection with herpes viruses. To investigate the possible role of herpes viral coinfections for apoptosis in HIV infection, we focused on Epstein-Barr virus (EBV) as an example for a herpes virus usually acquired during childhood. In 10 of 12 patients with apoptosis, we found increased levels of EBV genome in PBMC and/or tissues, indicating active EBV replication. By contrast, no increased burden of EBV was found in the four HIV-infected patients without apoptosis or in the controls. Our data indicate that in children the occurrence of apoptosis in HIV infection is closely related to activation of CD8+ T cells. Furthermore, primoinfection with or reactivation of herpes viruses, such as EBV, may substantially contribute to such T-cell activation and the ensuing apoptosis. Additional studies are warranted to evaluate the contribution of herpes virus-triggered apoptosis to the T-cell loss leading to the acquired immunodeficiency syndrome.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 785-793 ◽  
Author(s):  
Ronald T. Mitsuyasu ◽  
Peter A. Anton ◽  
Steven G. Deeks ◽  
David T. Scadden ◽  
Elizabeth Connick ◽  
...  

Abstract We have genetically engineered CD4+ and CD8+ T cells with human immunodeficiency virus (HIV) specificity by inserting a gene, CD4ζ, containing the extracellular domain of human CD4 (which binds HIV env) linked to the zeta (ζ) chain of the T-cell receptor (which mediates T-cell activation). Twenty-four HIV-positive subjects received a single infusion of 2 to 3 × 1010 autologous CD4ζ-modified CD4+and CD8+ T cells administered with (n = 11) or without (n = 13) interleukin-2 (IL-2). Subjects had CD4 counts greater than 50/μL and viral loads of at least 1000 copies/mL at entry. T cells were costimulated ex vivo through CD3 and CD28 and expanded for approximately 2 weeks. CD4ζ was detected in 1% to 3% of blood mononuclear cells at 8 weeks and 0.1% at 1 year after infusion, and survival was not enhanced by IL-2. Trafficking of gene-modified T cells to bulk rectal tissue and/or isolated lamina propria lymphocytes was documented in a subset of 5 of 5 patients at 14 days and 2 of 3 at 1 year. A greater than 0.5 log mean decrease in rectal tissue–associated HIV RNA was observed for at least 14 days, suggesting compartmental antiviral activity of CD4ζ T cells. CD4+ counts increased by 73/μL at 8 weeks in the group receiving IL-2. There was no significant mean change in plasma HIV RNA or blood proviral DNA in either treatment arm. This sustained, high-level persistence of gene-modified T cells demonstrates the feasibility of ex vivo T-cell gene therapy in HIV-infected adults and suggests the importance of providing HIV-specific T-helper function.


1993 ◽  
Vol 177 (3) ◽  
pp. 627-636 ◽  
Author(s):  
D Fowell ◽  
D Mason

Diabetes was induced in a normal nonautoimmune rat strain by rendering the animals relatively T cell deficient using a protocol of adult thymectomy and sublethal gamma irradiation. All male rats and 70% of females developed an acute syndrome with severe loss of weight and hyperglycemia. Diabetes in these lymphopoenic rats was associated with extensive insulitis involving CD4+ and CD8+ T cells and macrophages. The CD8+ T cells were essential for the development of diabetes but not insulitis. The autoimmune diabetes and insulitis were completely prevented by the injection of a particular CD4+ T cell subset, isolated from healthy syngeneic donors, of the phenotype CD45RClow T cell receptor alpha/beta+ RT6+ Thy-1- OX-40-. Cells of this protective phenotype, which make up about 5% of thoracic duct lymphocytes, were found to provide help for secondary antibody responses and produce interleukin 2 (IL-2) and IL-4, but no interferon gamma, on in vitro activation. These data provide evidence for the presence of autoreactive T cells in the normal immune system of the rat and reveal that in the intact animal these cells are prevented from expressing their autoreactive potential by other T cells.


2009 ◽  
Vol 83 (6) ◽  
pp. 2728-2742 ◽  
Author(s):  
Prasanna Jagannathan ◽  
Christine M. Osborne ◽  
Cassandra Royce ◽  
Maura M. Manion ◽  
John C. Tilton ◽  
...  

ABSTRACT To better understand the components of an effective immune response to human immunodeficiency virus (HIV), the CD8+ T-cell responses to HIV, hepatitis C virus (HCV), and cytomegalovirus (CMV) were compared with regard to frequency, immunodominance, phenotype, and interleukin-2 (IL-2) responsiveness. Responses were examined in rare patients exhibiting durable immune-mediated control over HIV, termed long-term nonprogressors (LTNP) or elite controllers, and patients with progressive HIV infection (progressors). The magnitude of the virus-specific CD8+ T-cell response targeting HIV, CMV, and HCV was not significantly different between LTNP and progressors, even though their capacity to proliferate to HIV antigens was preserved only in LTNP. In contrast to HIV-specific CD8+ T-cell responses of LTNP, HLA B5701-restricted responses within CMV pp65 were rare and did not dominate the total CMV-specific response. Virus-specific CD8+ T cells were predominantly CD27+45RO+ for HIV and CD27−45RA+ for CMV; however, these phenotypes were highly variable and heavily influenced by the degree of viremia. Although IL-2 induced significant expansions of CMV-specific CD8+ T cells in LTNP and progressors by increasing both the numbers of cells entering the proliferating pool and the number of divisions, the proliferative capacity of a significant proportion of HIV-specific CD8+ T cells was not restored with exogenous IL-2. These results suggest that immunodominance by HLA B5701-restricted cells is specific to HIV infection in LTNP and is not a feature of responses to other chronic viral infections. They also suggest that poor responsiveness to IL-2 is a property of HIV-specific CD8+ T cells of progressors that is not shared with responses to other viruses over which immunologic control is maintained.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 785-793 ◽  
Author(s):  
Ronald T. Mitsuyasu ◽  
Peter A. Anton ◽  
Steven G. Deeks ◽  
David T. Scadden ◽  
Elizabeth Connick ◽  
...  

We have genetically engineered CD4+ and CD8+ T cells with human immunodeficiency virus (HIV) specificity by inserting a gene, CD4ζ, containing the extracellular domain of human CD4 (which binds HIV env) linked to the zeta (ζ) chain of the T-cell receptor (which mediates T-cell activation). Twenty-four HIV-positive subjects received a single infusion of 2 to 3 × 1010 autologous CD4ζ-modified CD4+and CD8+ T cells administered with (n = 11) or without (n = 13) interleukin-2 (IL-2). Subjects had CD4 counts greater than 50/μL and viral loads of at least 1000 copies/mL at entry. T cells were costimulated ex vivo through CD3 and CD28 and expanded for approximately 2 weeks. CD4ζ was detected in 1% to 3% of blood mononuclear cells at 8 weeks and 0.1% at 1 year after infusion, and survival was not enhanced by IL-2. Trafficking of gene-modified T cells to bulk rectal tissue and/or isolated lamina propria lymphocytes was documented in a subset of 5 of 5 patients at 14 days and 2 of 3 at 1 year. A greater than 0.5 log mean decrease in rectal tissue–associated HIV RNA was observed for at least 14 days, suggesting compartmental antiviral activity of CD4ζ T cells. CD4+ counts increased by 73/μL at 8 weeks in the group receiving IL-2. There was no significant mean change in plasma HIV RNA or blood proviral DNA in either treatment arm. This sustained, high-level persistence of gene-modified T cells demonstrates the feasibility of ex vivo T-cell gene therapy in HIV-infected adults and suggests the importance of providing HIV-specific T-helper function.


2015 ◽  
Vol 11 (3) ◽  
pp. e1004671 ◽  
Author(s):  
Krista E. van Meijgaarden ◽  
Mariëlle C. Haks ◽  
Nadia Caccamo ◽  
Francesco Dieli ◽  
Tom H. M. Ottenhoff ◽  
...  

2005 ◽  
Vol 79 (5) ◽  
pp. 3195-3199 ◽  
Author(s):  
Jean-Daniel Lelièvre ◽  
Frédéric Petit ◽  
Damien Arnoult ◽  
Jean-Claude Ameisen ◽  
Jérôme Estaquier

ABSTRACT Fas-mediated T-cell death is known to occur during human immunodeficiency virus (HIV) infection. In this study, we found that HIV type 1 LAI (HIV-1LAI) primes CD8+ T cells from healthy donors for apoptosis, which occurs after Fas ligation. This effect is counteracted by a broad caspase inhibitor (zVAD-fmk). Fas-mediated cell death does not depend on CD8+ T-cell infection, because it occurred in the presence of reverse transcriptase inhibitors. However, purified CD8+ T cells are sensitive to Fas only in the presence of soluble CD4. Finally, we found that interleukin 7 (IL-7) increases Fas-mediated CD4+ and CD8+ T-cell death induced by HIV-1LAI. Since high levels of IL-7 are a marker of poor prognosis during HIV infection, our data suggest that enhancement of Fas-mediated T-cell death by HIV-1LAI and IL-7 is one of the mechanisms involved in progression to AIDS.


Sign in / Sign up

Export Citation Format

Share Document