scholarly journals Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells.

1995 ◽  
Vol 181 (4) ◽  
pp. 1507-1517 ◽  
Author(s):  
S Hashimoto ◽  
M Dono ◽  
M Wakai ◽  
S L Allen ◽  
S M Lichtman ◽  
...  

Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of CD5-expressing B lymphocytes. Most studies have found that these leukemic CD5+ B cells, like their normal counterparts, use immunoglobulin (Ig) variable (V) region genes that exhibit minimal, if any, somatic diversity. These and other observations have suggested that CD5+ B cells may be incapable of generating Ig V gene diversity, and therefore may not be able to develop higher affinity binding sites that could be selected by antigen. However, most of the studies of CLL and normal CD5+ B cells have focused on IgM-producing cells. Since somatic mutations are most often seen in B cells that have undergone an isotype class switch, we analyzed the Ig heavy (H) and light (L) chain variable region genes of seven IgG+CD5+ CLL B cells to determine if somatic diversification and antigen selection had occurred. The data derived provide evidence for skewed use, somatic diversification, and antigenic selection of the Ig V region genes. Nonrandom use of both H and L chain V region genes was manifested by an overrepresentation of VH4 and VKI family genes and the underrepresentation of the JH4 gene segment. Furthermore, VH4 gene use was restricted to only two family members (4.21 and 4.18). In four of the seven cases, the VH and VL genes displayed > or = 5% difference from the most homologous known germline counterparts. Polymerase chain reaction and Southern blot analyses performed in two of these patients demonstrated that their unique VH CDR2 and adjacent sequences were not present in their germline DNA. In addition, a significant level of diversity was seen in the rearranged DJH segments and at the VL-JL junctions of every patient that occurred both at the time of recombination and subsequently. The localization of replacement changes to complementarity determining regions of some patients suggested that antigen selection had occurred. Furthermore, the mutations identified in the VH and VL genes of each individual patient were strikingly similar, both in number and location. Collectively, the data indicate that a subset of CD5+ CLL B cells can display Ig V region gene mutations. In addition, they are consistent with the notions that in some cases antigen selection of these mutations may have occurred, and that antigen stimulation may be a promoting factor in the evolution of certain CLL clones.

Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 2036-2041 ◽  
Author(s):  
Liguang Chen ◽  
John Apgar ◽  
Lang Huynh ◽  
Frank Dicker ◽  
Teresa Giago-McGahan ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) B cells that express unmutated immunoglobulin heavy-chain variable region genes (IgVH) generally express ZAP-70, in contrast to normal B cells or most CLL cases with mutated IgVH. Following IgM ligation, ZAP-70+ CLL cells had significantly higher levels of phosphorylated p72Syk, BLNK, and phospholipase-Cγ (PLCγ) and had greater[Ca2+]i flux than did ZAP-70–negative CLL cases, including unusual ZAP-70–negative cases with unmutated IgVH. IgM ligation of ZAP-70–negative CLL B cells infected with an adenovirus vector encoding ZAP-70 induced significantly greater levels of phosphorylated p72Syk, BLNK, and PLCγ and had greater[Ca2+]i flux than did similarly stimulated, noninfected CLL cells or CLL cells infected with a control adenovirus vector. We conclude that expression of ZAP-70 in CLL allows for more effective IgM signaling in CLL B cells, a feature that could contribute to the relatively aggressive clinical behavior generally associated with CLL cells that express unmutated IgVH.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1960-1960
Author(s):  
Mark Klinger ◽  
Malek Faham ◽  
Jianbiao Zheng ◽  
Kojo S.J. Elenitoba-Johnson ◽  
Sherrie L. Perkins ◽  
...  

Abstract Background: Chronic lymphocytic leukemia (CLL) usually develops from asymptomatic monoclonal expansions of CD5 positive B-cells termed monoclonal B-cell lymphocytosis (MBL), present in the peripheral blood (PB) of approximately 5% of otherwise healthy older individuals. Although MBL only occasionally progresses to CLL, cases that do progress typically have higher MBL cell counts in the 1500-4000/µL range. Although antigen selection appears to play a central role in the development CLL, it is unclear whether this occurs at an early MBL stage or primarily during the progression of MBL to CLL. One prior study has reported clonal heterogeneity in MBL finding it in 4 of 6 low count MBL cases from familial CLL kindreds using a single cell PCR technique (Leukemia 2010,24:133-140). In this study, we assessed the VH repertoire and degree of clonal heterogeneity in sporadic MBL cases using next-generation sequencing (NGS) of the rearranged immunoglobulin heavy chain (IgH) locus. Methods: The 35 cases selected for sequencing represented residual, cryopreserved material from PB specimens submitted to ARUP for clinical phenotyping studies. All contained polytypic CD5 negative B-cells in addition to MBL/CLL phenotype cells, and had 2 or more vials for analysis. The majority (80%) had counts of MBL cells below 1000/µL (mean 294/, range 795-30 cells/µL). FACS purification of MBL cells (CD20+CD5+) and CD5 negative B-cells was performed on all samples. The IgH repertoire from the unsorted and two sorted populations was determined by NGS using the LymphoSIGHT method. Results: Five cases could not be analyzed due to insufficient numbers of MBL cells. Clonal VDJ rearrangements or clonotypes were identified in the remaining 30 based on their high frequency within the B-cell repertoire of the unsorted sample, and having a higher frequency in the sorted MBL cells relative to the sorted CD5 negative B-cells. Functional clonotypes were identified in 29 of these 30 cases. Interestingly, 5 cases had 2 functional unrelated clonotypes using different D and/or J segments that also employed different V segments. Of the 5 cases with 2 unrelated clonotypes, 3 had MBL cell counts below 1000/µL (32, 275, and 865) and 2 above (1640, 2600). Moreover, 1 of the clones in the case with 865 cells/µL represented only 25% of the MBL cells or 220 cells/µL, while 1 clone in the case with 2600 MBL cells/µL represented 18% of the MBL cells or 470 cells/µL. By flow cytometry, the CD5+ CD20+ cells in 2 of the cases with 2 functional clonotypes showed polytypic kappa/lambda expression (ratios near 1), 2 cases had uniform dim monotypic kappa expression, and 1 case showed 90% dim kappa and 10% dim lambda expression. The most frequently used VH segments were V4-34 in 6/34 or 18% of functional clonotypes, followed by V3-23 (11%), and V3-21 (9%). The V1-69 segment was used by only 1/34 (3%) functional clonotypes. The VH segments in 72% of cases with functional clonotypes were mutated (homology to germline < 98%), with 6 cases showing clear evidence of ongoing mutation by having 2 or more related clones. Conclusions: We demonstrate that MBL exhibits considerable clonal heterogeneity, with 2 distinct unrelated clones identified in 17% of 30 analyzed cases. Finding 2 distinct clones cannot be explained by a lack of allelic exclusion or the presence of 1 cell with 2 productive IgH rearrangements since each clone had different frequencies within the sorted MBL cell repertoire. This is further supported by finding the ratios of the two MBL clones in 2 cases being different in the unsorted compared to the MBL sorted cells. Clonal heterogeneity appears to occur at an early stage since the majority of clones (6/10) had cell counts below 500 cells/µL. We also found that clonal heterogeneity of MBL may not be detectable by flow cytometry or may appear as polytypic CD5+CD20+ B-cells. To our knowledge, this represents the first report of clonal heterogeneity in sporadic MBL. Our identification of infrequent use of V1-69 (1/34) supports prior studies indicating the VH repertoire of MBL is different than CLL which frequently employs V1-69. Finding evidence of ongoing VH mutation suggests antigen selection may occur in early MBL. Overall, our findings are consistent with recent observations (Cancer Cell 2011, 20;246-259) suggesting that hematopoietic stem cells from CLL patients can generate mono-or oligoclonal MBL phenotype cells that can then be selected through antigen binding for expansion. Disclosures Faham: Sequenta, Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 1848-1854 ◽  
Author(s):  
Terry J. Hamblin ◽  
Zadie Davis ◽  
Anne Gardiner ◽  
David G. Oscier ◽  
Freda K. Stevenson

Abstract Despite having several characteristics of naı̈ve B cells, chronic lymphocytic leukemia (CLL) cells have been shown in some cases to have somatically mutated Ig variable region genes, indicating that the cell of origin has passed through the germinal center. A previous study of patients with CLL found an association between lack of somatic mutation and trisomy 12 and, therefore, possibly with a less favorable prognosis. We have sequenced the Ig VH genes of the tumor cells of 84 patients with CLL and correlated our findings with clinical features. A total of 38 cases (45.2%) showed ≥ 98% sequence homology with the nearest germline VH gene; 46 cases (54.8%) showed &gt;2% somatic mutation. Unmutated VH genes were significantly associated with V1-69 and D3-3 usage, with atypical morphology; isolated trisomy 12, advanced stage and progressive disease. Survival was significantly worse for patients with unmutated VH genes irrespective of stage. Median survival for stage A patients with unmutated VH genes was 95 months compared with 293 months for patients whose tumors had mutated VHgenes (P = .0008). The simplest explanation is that CLL comprises 2 different diseases with different clinical courses. One, arising from a memory B cell, has a benign course, the other, arising from a naı̈ve B cell, is more malignant.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 55-55
Author(s):  
Graham Packham ◽  
Serge Krysov ◽  
Christopher Ian Mockridge ◽  
Kathy N Potter ◽  
Freda K Stevenson

Abstract Abstract 55 Several lines of evidence support the idea that surface immunoglobulin M (sIgM) plays a key role in determining the clinical behavior of chronic lymphocytic leukemia (CLL). For example, the presence of somatic mutations in immunoglobulin variable region genes is a strong prognostic marker with unmutated CLL (U-CLL) associated with a poor outcome relative to mutated CLL (M-CLL). U-CLL also generally express higher levels of sIgM and retain the ability to signal via this receptor. In this study, we used surface biotinylation to analyse sIgM in CLL and discovered that it exists in two forms with differing mobility on SDS-PAGE. Treatment with glycosidases revealed that these forms were due to different N-glycosylation patterns in the μ constant region. One form is similar to that of normal B cells in bearing mature complex glycans common to most cell surface glycoproteins. The other is an immature mannosylated form more characteristic of endoplasmic reticulum (ER)-located μ chains. CLL cells expressed variable proportions of the immature mannosylated form and quantitative analysis demonstrated that, on average, the proportion of mannosylated sIgM was approximately 2-fold higher (p=0.006) in U-CLL compared to M-CLL. Although normal B cells isolated from blood expressed only the mature form of sIgM, in vitro treatment with anti-μ resulted in upregulation of the immature form, suggesting that glycan modification is a consequence of antigen exposure. Consistent with this, in vitro incubation of CLL cells was associated with increased expression of the mature form of sIgM. Phosphotyrosine analysis demonstrated that both forms of sIgM were able to signal following sIgM engagement in vitro. Taken together, these findings support the concept that CLL cells are continuously exposed to antigen in vivo. This process leads to a change in the N-glycosylation pattern of the re-expressed sIgM so that a mannosylated form predominates, especially in U-CLL. Strikingly, expression of mannosylated sIgM is also characteristic of follicular lymphoma, where it is constitutively displayed via N-glycosylation sites in the Ig variable region (Radcliffe et al. J Biol Chem. 2007; 282, 7405-15). Persistent mannosylation of sIgM appears to be a feature common to several B-cell malignancies, suggesting a role in pathogenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 19-19
Author(s):  
Abibatou Sall ◽  
Teresa Amato ◽  
Alessandro Gozzetti ◽  
Awa Oumar Touré ◽  
Saliou Diop ◽  
...  

Introduction : Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in Western populations, being rarer in Asian and African people. It has been suggested that patients with CLL from Africa might have a more aggressive disease compared with Causasien patients. In this study, we aimed to identify genetic factors that may account for this difference Methods: We collected peripheral blood mononuclear cells (PBMCs) from a total of 75 patients with CLL, 25 from Senegal (Africa), and 50 from Siena. Since it is well known that there are differences in germline IGH repertoires between different populations, we also collected PBMCs from five healthy Senegalese individuals as control. We analyzed immunoglobulin heavy chain (IGH) genes mutational status by performing next-generation sequencing in these 2 groups of patients. Results: We found that Senegalese patients more frequently had adverse prognostic factors and an unmutated profile. Furthermore, we documented that IGHV1 (IGHV1-69), IGHD3, and IGHJ6 were significantly more frequent in Senegalese patients, whereas IGHV3-30 was common and limited to the Italian cohort. Stereotyped receptors commonly detected in the white population were not recorded in our Senegalese series. Conclusion: The different IGH repertoire we observed in the Senegalese cohort may reflect the diverse genetic and microenvironmental (ie, polymicrobial stimulation) background. Disclosures Gozzetti: Takeda: Honoraria; Amgen: Honoraria; Janssen: Honoraria, Research Funding.


Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4609-4614 ◽  
Author(s):  
Liguang Chen ◽  
George Widhopf ◽  
Lang Huynh ◽  
Laura Rassenti ◽  
Kanti R. Rai ◽  
...  

We examined isolated leukemia B cells of patients with chronic lymphocytic leukemia (CLL) for expression of zeta-associated protein 70 (ZAP-70). CLL B cells that have nonmutated immunoglobulin variable region genes (V genes) expressed levels of ZAP-70 protein that were comparable to those expressed by normal blood T cells. In contrast, CLL B cells that had mutated immunoglobulin variable V genes, or that had low-level expression of CD38, generally did not express detectable amounts of ZAP-70 protein. Leukemia cells from identical twins with CLL were found discordant for expression of ZAP-70, suggesting that B-cell expression of ZAP-70 is not genetically predetermined. Ligation of the B-cell receptor (BCR) complex on CLL cells that expressed ZAP-70 induced significantly greater tyrosine phosphorylation of cytosolic proteins, including p72Syk, than did similar stimulation of CLL cells that did not express ZAP-70. Also, exceptional cases of CLL cells that expressed mutated immunoglobulin V genes and ZAP-70 also experienced higher levels tyrosine phosphorylation of such cytosolic proteins following BCR ligation. Following BCR ligation, ZAP-70 underwent tyrosine phosphorylation and became associated with surface immunoglobulin and CD79b, arguing for the involvement of ZAP-70 in BCR signaling. These data indicate that expression of ZAP-70 is associated with enhanced signal transduction via the BCR complex, which may contribute to the more aggressive clinical course associated with CLL cells that express nonmutated immunoglobulin receptors.


Blood ◽  
2002 ◽  
Vol 100 (9) ◽  
pp. 3419-3422 ◽  
Author(s):  
Sarka Ruzickova ◽  
Axel Pruss ◽  
Marcus Odendahl ◽  
Karsten Wolbart ◽  
Gerd-Rüdiger Burmester ◽  
...  

Abstract Autoimmune phenomena may precede or accompany lymphoid malignancies, especially B-chronic lymphocytic leukemia (B-CLL). We report a patient with a 7-year history of primary (idiopathic) cold agglutinin (CA) disease in whom B-CLL subsequently developed. Immunophenotyping and single-cell reverse transcription–polymerase chain reaction (RT-PCR) were applied to investigate the origin and diversification of leukemic B cells. The obtained data indicate a memory cell-type origin of the B-CLL cells. Remarkably, theIgVκ genes of the B-CLL cells showed intraclonal diversity, whereas the mutational pattern of their paired IgVH genes were invariant. Thus, the light-chain–restricted intraclonal diversity in individual leukemic B cells in this patient strongly indicates a differential regulation or selection of the ongoing mutational process. Of note, our findings suggest that this B-CLL had developed from the patient's CA-producing B-cell population.


1988 ◽  
Vol 167 (3) ◽  
pp. 840-852 ◽  
Author(s):  
T J Kipps ◽  
E Tomhave ◽  
P P Chen ◽  
D A Carson

Recently the minor B cell subpopulation that expresses the CD5 (Leu-1) antigen has been implicated as a source of IgM autoantibodies. Chronic lymphocytic leukemia (CLL), the most common leukemia in humans, represents a malignancy of small B lymphocytes that also express the CD5 antigen. However, little is known concerning the antibody variable region genes (V genes) that are used by these malignant CD5 B cells. We have found that a relatively high frequency of CLL patients have leukemic B cells with surface immunoglobulin (sIg) recognized by 17.109, a murine mAb specific for a kappa light chain associated crossreactive idiotype (CRI) associated with rheumatoid factor and other IgM autoantibodies. Flow cytometric analyses revealed that the relative expression of the 17.109-CRI by circulating leukemic B cells was directly proportional to the levels of sIg kappa light chain, indicating that there exists stable idiotype expression in the leukemic population. To examine this at the molecular level, the nucleic acid sequences encoding the Ig kappa light chains of two unrelated patients with CLL bearing sIg with the 17.109-CRI were determined. Analyses of multiple independent kappa light chain cDNA clones did not reveal any evidence for sequence heterogeneity in the CLL cell population. Furthermore, the nucleic acid sequences expressed by the leukemic cells of these two patients were identical or very homologous to a germline V kappa gene isolated from placental DNA, designated Humkv 325, or "V kappa RF" because of its association with IgM autoantibodies. This study suggests; (a) that the malignant CD5+ B lymphocytes in CLL use the same V kappa gene that has been highly associated with IgM autoantibodies and (b) that the expression of V genes is stable in CLL, in contrast to other B cell malignancies examined to date. We propose that many CLL cases represent malignancies of autoreactive CD5 B cells that use a restricted set of conserved V genes. This property may render CLL particularly amenable to immunotherapy with antiidiotypic antibodies.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 1848-1854 ◽  
Author(s):  
Terry J. Hamblin ◽  
Zadie Davis ◽  
Anne Gardiner ◽  
David G. Oscier ◽  
Freda K. Stevenson

Despite having several characteristics of naı̈ve B cells, chronic lymphocytic leukemia (CLL) cells have been shown in some cases to have somatically mutated Ig variable region genes, indicating that the cell of origin has passed through the germinal center. A previous study of patients with CLL found an association between lack of somatic mutation and trisomy 12 and, therefore, possibly with a less favorable prognosis. We have sequenced the Ig VH genes of the tumor cells of 84 patients with CLL and correlated our findings with clinical features. A total of 38 cases (45.2%) showed ≥ 98% sequence homology with the nearest germline VH gene; 46 cases (54.8%) showed >2% somatic mutation. Unmutated VH genes were significantly associated with V1-69 and D3-3 usage, with atypical morphology; isolated trisomy 12, advanced stage and progressive disease. Survival was significantly worse for patients with unmutated VH genes irrespective of stage. Median survival for stage A patients with unmutated VH genes was 95 months compared with 293 months for patients whose tumors had mutated VHgenes (P = .0008). The simplest explanation is that CLL comprises 2 different diseases with different clinical courses. One, arising from a memory B cell, has a benign course, the other, arising from a naı̈ve B cell, is more malignant.


Sign in / Sign up

Export Citation Format

Share Document