scholarly journals Peptide-independent Recognition by Alloreactive Cytotoxic T Lymphocytes (CTL)

1997 ◽  
Vol 185 (6) ◽  
pp. 1023-1034 ◽  
Author(s):  
Pamela A. Smith ◽  
Anders Brunmark ◽  
Michael R. Jackson ◽  
Terry A. Potter

We have isolated several H-2Kb–alloreactive cytotoxic T cell clones and analyzed their reactivity for several forms of H-2Kb. These cytotoxic T lymphocytes (CTL) were elicited by priming with a skin graft followed by in vitro stimulation using stimulator cells that express an H-2Kb molecule unable to bind CD8. In contrast to most alloreactive T cells, these CTL were able to recognize H-2Kb on the surface of the antigen processing defective cell lines RMA-S and T2. Furthermore, this reactivity was not increased by the addition of an extract containing peptides from C57BL/6 (H-2b) spleen cells, nor was the reactivity decreased by treating the target cells with acid to remove peptides bound to MHC molecules. The CTL were also capable of recognizing targets expressing the mutant H-2Kbm8 molecule. These findings suggested that the clones recognized determinants on H-2Kb that were independent of peptide. Further evidence for this hypothesis was provided by experiments in which H-2Kb produced in Drosophila melanogaster cells and immobilized on the surface of a tissue culture plate was able to stimulate hybridomas derived from these alloreactive T cells. Precursor frequency analysis demonstrated that skin graft priming, whether with skin expressing the wild-type or the mutant H-2Kb molecule, is a strong stimulus to elicit peptide-independent CTL. Moreover, reconstitution experiments demonstrated that the peptide-independent CTL clones were capable of mediating rapid and complete rejection of H-2–incompatible skin grafts. These findings provide evidence that not all allorecognition is peptide dependent.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4079-4079
Author(s):  
Lei Bao ◽  
Mindy M Stamer ◽  
Kimberly Dunham ◽  
Deepa Kolaseri Krishnadas ◽  
Kenneth G Lucas

Abstract Abstract 4079 Poster Board III-1014 MAGE A1 and MAGE A3 are cancer testis antigens that are expressed on a number of malignant tumor cells, but not by normal cells, except for male germ cells which lack HLA expression. Therefore, MAGE cytotoxic T lymphocytes are strictly tumor-specific. Adoptive transfer of antigen specific cytotoxic T lymphocytes (CTL) provides immediate graft-versus tumor effects while minimizing risk for graft-versus-host disease. The aim of the current study was to find ideal conditions for expansion of CTL targeting tumor-associated antigens from peripheral blood mononuclear cells (PBMCs) of healthy donors to be used in allogenic cell therapy. In this study we investigated the ability to generate MAGE A1 and MAGE A3 specific cytotoxic T cells using autologous dendritic cells (DC) loaded with MAGE A1 and MAGE A3 overlapping peptides. CTL lines specific for MAGE A1 and MAGE A3 were established by stimulating CD8 T cells from healthy donors with autologous dendritic cells loaded with MAGE A1 or MAGE A3 overlapping pooled peptides in round-bottomed, 96-well plates. CD8+ T cells were restimulated with the same ratio of peptide pulsed DC on days 7 and 14 in the presence of IL-2 (50 U/ml), IL-7 and IL-15 (5 ng/ml). These microcultures were screened 10 days after the third stimulation for their capacity to produce interferon-gamma (IFN-gamma) when stimulated with autologous EBV-transformed B lymphocytes (BLCL) transduced with lentivirus(LV) encoding MAGE A1 or MAGE A3 and autologous BLCL transduced with LV encoding GFP. MAGE A1 and MAGE-A3 specific IFN-gamma producing cells were rapidly expanded in OKT3 and IL2. The specificity of the rapidly expanded MAGE A1 and MAGE A3 specific T cells was confirmed by IFN-gamma production as measured by intracellular cytokine staining and ELISA as well as antigen specific cytotoxicity by a standard 51chromium (51Cr) release assay. We successfully generated MAGE A1 and MAGE A3 specific CTL lines from healthy donors using this method. Specific CTL lines showed cytotoxicity in vitro not only to target cells pulsed with MAGE A1 or MAGE A3 peptides but also to target cells transduced with LV-MAGE A1 or LV-MAGE A3. Specific cytolytic activity was accompanied by IFN-gamma secretion. These data indicate that tumor antigen specific CTL can be expanded using overlapping peptides regardless of an individual's HLA specificity. The ability to generate tumor specific CTL from donors of various HLA backgrounds provide a rationale for utilizing MAGE A1 and MAGE A3 overlapping peptides for expansion of antigen specific T cells for adoptive T-cell therapy against MAGE A1 or MAGE A3 expressing tumors. Disclosures: No relevant conflicts of interest to declare.


1992 ◽  
Vol 78 (2) ◽  
pp. 79-86 ◽  
Author(s):  
Qi Chen ◽  
Peinan Sun ◽  
Ignazia Prigione ◽  
Hong Xie ◽  
Silvano Ferrini

In an attempt to construct bispecific monoclonal antibodies (bimAbs) able to target cytotoxic T lymphocytes against human hepatoma cells, an HGPRT-deficient mutant of the Hepama-6 hybridoma, which produces an antihuman-hepatoma mAb, was directly fused with splenocytes from Balb/C mice immunized by a polyclonal cytotoxic T-cell line. Hybrid hybridomas were selected in HAT medium, and their supernatants were directly screened for the ability to induce IL-2-cultured cytotoxic T lymphocytes to kill hepatoma cells in a 51Cr-release assay. The selected hybrid hybridoma, termed DQ-33, secretes a bimAb, which reacts with a CD3-associated determinant. When resting peripheral-blood lymphocytes were used as effector cells, virtually no cytolytic activity could be induced by DQ-33, whereas phytohemagglutinin-activated lymphocytes that had been expanded in vitro in IL-2-containing medium could be efficiently targeted against hepatoma cells. Targeting by DQ-33 bimAb was analyzed on different subsets of IL-2-cultured lymphocytes. It was evident that CD+4–8+ TCRα/β+ and CD3+4–8-TCRγ/δ+ lymphocytes were efficiently induced by bimAb to lyse human hepatoma cells, whereas no induction of cytolysis could be observed when CD3 + 4+8-TCRα/β+ cells were used as effectors. DQ-33 bimAb was also able to induce lymphokine secretion (IL-2, GM-CSF and TNF-α) by all the different subsets of lymphocytes analyzed in the presence of target cells expressing the relevant antigen, independent of the expression of cytolytic activity.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1888-1888
Author(s):  
Gheath Alatrash ◽  
Mao Zhang ◽  
Na Qiao ◽  
Pariya Sukhumalchandra ◽  
Madhushree Zope ◽  
...  

Abstract Introduction Immunotherapy using cytotoxic T lymphocytes (CTL) has shown efficacy in the management of leukemia. However the efficacy of CTL, whether they are engineered and adoptively transferred or administered as part of allogeneic stem cell transplantation, must be balanced by their off-target toxicities, which at times can be lethal. Fucosylation, which is mediated by fucosyl transferases, is a process by which fucose sugar groups are added to cell surface receptors. Fucosylated T cells have been shown to preferentially home to inflamed tissues, including bone marrow. In view of recent data showing that fucosylation with fucosyltransferase (FT)-VI facilitates homing of regulatory T cells (T-regs) to inflamed tissues and cord blood engraftment into the bone marrow, we hypothesized that fucosylation could enhance the efficacy of CTL that target leukemia antigens. In this study, we tested whether ex vivo fucosylation of CTL that target the HLA-A2 restricted leukemia peptides, CG1 (derived from cathepsin G) and PR1 (derived from neutrophil elastase and proteinase 3), with the novel enzyme FT-VII enhances their migration and anti-leukemia functions. Experimental design CG1- and PR1-CTL were generated using standard methodologies. Fucosylation was achieved by incubating T cells with FTVII enzyme and GDP fucose (Targazyme). To study migration, fucosylated and non-fucosylated CTL were passed through chambers coated with a HUVEC barrier and migrated CTL were detected using cell fluorescence. To examine CTL surface markers, cells were stained for standard co-stimulatory and adhesion molecules and were analyzed using flow cytometry. Calcein AM cytotoxicity assays were used to determine the effects of fucosylation on CTL killing of target cells. In vitro effects of fucosylation on leukemia-CTL specificity was accomplished using standard CFU assays. For in vivo assessment of fucosylation on activity of CTL, NSG mice were engrafted with U937-A2 human acute myeloid leukemia (AML) cells or primary AML and were treated with intravenous injections of 5.0 x 105 fucosylated or non-fucosylated CTL. Mice were followed twice weekly and were sacrificed for bone marrow and tissue analysis at prespecified time points or when they became moribund. Results Fucosylated CG1-CTL and PR1-CTL showed approximately 2-fold higher migration through the HUVEC cell barrier compared to non-fucosylated CTL. Analysis of T cell surface expression of chemokine/adhesion molecules showed an approximately a 5-fold increase in CD49d and CD195, and a 50% increase in CXCR1 and CXCR3 following fucosylation. Fucosylation enhanced the cytotoxicity of leukemia specific-CTL against primary HLA-A2+ leukemia and HLA-A2+ U937 cells at increasing effector to target ratios. For primary patient AML, we show enhanced leukemia killing by fucosylated-PR1-CTL in comparison with non-fucosylated-PR1-CTL at the 20:1 effector to target (E:T) ratio (25-fold higher killing ) and the 10:1 E:T ratio (4-fold higher killing). Similar results were seen using the U937-A2 AML cell line favoring fucosylated-CG1-CTL: 20-fold higher killing at 20:1 E:T ratio and a 9-fold higher killing at the 10:1 E:T ratio. In vitro CFU assays using HLA-A2+ healthy donor bone marrow showed no change in the specificity of the antigen specific CTL following fucosylation. Specifically we show 283 and 295 colonies in the fucosylated and non-fucosylated CG1-CTL groups, respectively (P >0.05). These were also compared to irrelevant peptide HIV-CTL, which demonstrated 286 and 269 CFUs in the fucosylated and non-fucosylated HIV-CTL groups, respectively (P >0.05). In vivo experiments using CG1-CTL against primary AML showed 5-fold higher killing of AML by fucosylated CTL vs. non-fucosylated CTL. Similar results were also seen using U937-A2 AML targets. Conclusion Fucosylation with FT-VII enhances the efficacy of leukemia-targeting CTL against primary human AML and AML cell lines. These data demonstrate a novel approach to enhance the efficacy of antigen specific CTL that could be used in adoptive cellular immunotherapy approaches for leukemia. Disclosures No relevant conflicts of interest to declare.


1986 ◽  
Vol 164 (3) ◽  
pp. 962-967 ◽  
Author(s):  
M F Luciani ◽  
J F Brunet ◽  
M Suzan ◽  
F Denizot ◽  
P Golstein

At least some long-term in vitro-cultured cytotoxic T cell clones and uncloned cell populations are able, in the presence of Con A, to lyse other cells, to be lysed by other cells, but not to lyse themselves. This as-yet-unexplained result may have implications as to the mechanism of T cell-mediated cytotoxicity.


2000 ◽  
Vol 191 (5) ◽  
pp. 805-812 ◽  
Author(s):  
Reinhard Obst ◽  
Nikolai Netuschil ◽  
Karsten Klopfer ◽  
Stefan Stevanović ◽  
Hans-Georg Rammensee

By analyzing T cell responses against foreign major histocompatibility complex (MHC) molecules loaded with peptide libraries and defined self- and viral peptides, we demonstrate a profound influence of self-MHC molecules on the repertoire of alloreactive T cells: the closer the foreign MHC molecule is related to the T cell's MHC, the higher is the proportion of peptide-specific, alloreactive (“allorestricted”) T cells versus T cells recognizing the foreign MHC molecule without regard to the peptide in the groove. Thus, the peptide repertoire of alloreactive T cells must be influenced by self-MHC molecules during positive or negative thymic selection or peripheral survival, much like the repertoire of the self-restricted T cells. In consequence, allorestricted, peptide-specific T cells (that are of interest for clinical applications) are easier to obtain if T cells and target cells express related MHC molecules.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3660
Author(s):  
Mateja Prunk ◽  
Milica Perišić Nanut ◽  
Tanja Jakoš ◽  
Jerica Sabotič ◽  
Urban Švajger ◽  
...  

Cystatin F is a protein inhibitor of cysteine cathepsins, peptidases involved in the activation of the effector molecules of the perforin/granzyme pathway. Cystatin F was previously shown to regulate natural killer cell cytotoxicity. Here, we show that extracellular cystatin F has a role in regulating the killing efficiency of cytotoxic T lymphocytes (CTLs). Extracellular cystatin F was internalised into TALL-104 cells, a cytotoxic T cell line, and decreased their cathepsin C and H activity. Correspondingly, granzyme A and B activity was also decreased and, most importantly, the killing efficiency of TALL-104 cells as well as primary human CTLs was reduced. The N-terminally truncated form of cystatin F, which can directly inhibit cathepsin C (unlike the full-length form), was more effective than the full-length inhibitor. Furthermore, cystatin F decreased cathepsin L activity, which, however, did not affect perforin processing. Cystatin F derived from K-562 target cells could also decrease the cytotoxicity of TALL-104 cells. These results clearly show that, by inhibiting cysteine cathepsin proteolytic activity, extracellular cystatin F can decrease the cytotoxicity of CTLs and thus compromise their function.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 1020-1024 ◽  
Author(s):  
Scott R. Burrows ◽  
Rajiv Khanna ◽  
Denis J. Moss

Abstract Alloreactive T lymphocytes that respond directly to foreign major histocompatibility complex (MHC) molecules and bound peptide are known to be central mediators of graft-versus-host disease (GVHD) and allograft rejection. We have recently identified a peptide from the human protein, cytochrome P450 (isotypes IIC9, 10, or 18), that is recognized in association with human leukocyte antigen (HLA) B*3501 by alloreactive cytotoxic T lymphocytes (CTLs). These CTLs with this specificity were isolated from several unrelated individuals and were found to express a common T-cell receptor (TCR). Synthetic analogs of the cytochrome P450 peptide were generated by introducing single amino acid substitutions at putative TCR contact positions. Four altered peptide ligands were powerful competitive antagonists of these CTL clones, reducing lysis levels of target cells expressing the alloantigen HLA B*3501 by over 80%. This first demonstration that it is possible to suppress CTL alloreactivity with structural variants of allodeterminants raises the prospect that such TCR antagonists could be exploited within the clinical arena to specifically modulate GVHD and allograft rejection.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 578-578 ◽  
Author(s):  
Marie Bleakley ◽  
Audrey Mollerup ◽  
Colette Chaney ◽  
Michele Brown ◽  
Stanley R. Riddell

Abstract Graft versus host disease (GVHD) after allogeneic stem cell transplant (SCT) is initiated by the activation of alloreactive T cells by host dendritic cells (DC) in lymphoid tissue. Studies in murine models have demonstrated that selective depletion of naïve T cells abrogates GVHD in major and minor histocompatibility antigen (miH) mismatched SCT and provides for rapid reconstitution of memory T cell responses to pathogens. This suggests the memory subset may lack a sufficient repertoire of alloreactive T cells or fail to localize to sites where GVHD is initiated. If such a strategy were effective in humans, morbidity from GVHD would be reduced, but the graft versus leukemia (GVL) effect might be compromised. To explore the potential of this approach in humans, we developed a novel limiting dilution assay using DC as stimulator cells in vitro to analyze the frequency and repertoire of human miH reactive T cells in highly purified naïve and memory T cell subsets obtained from HLA identical volunteer donor pairs. For each pair, mature DC were derived by differentiation of CD14+ monocytes in vitro from one volunteer, and pure (>97%) populations of naïve (CD62L+, CD45 RA+, CD45RO-) and memory (CD45RO+) CD8 T cells were obtained by FACS sorting of CD8 enriched PBMC from the respective HLA identical sibling. Memory and naïve T cells were cultured for 12 days in 96 well plates at a range of concentrations with DC at a 30:1 ratio and IL12 (10 ng/ml), and IL15 (10 ng/ml) was added on day 7. On day 12, the wells were screened against target cells from each volunteer in a chromium release assay (CRA) to quantitative T cells with reactivity against miH. All wells with reactivity in this screening assay were subsequently expanded using anti CD3 antibody and IL2 and retested by CRA to validate the results of the screening assay. In multiple experiments using different HLA matched pairs, T cells with specific and reproducible cytotoxic activity (>15% lysis) against target cells from the DC donor but not autologous targets were only isolated from wells plated with naïve CD8 T cells, and there was no reproducible cytotoxicity from wells plated with memory T cells. This data demonstrates that miH specific CD8 T cells are found predominantly, and possibly exclusively, in the naïve T cell subset in humans. This data is consistent with a dramatically reduced repertoire of miH alloreactive T cells in the memory T cell pool and supports the development of protocols to prevent GVHD by selective depletion of CD45RA+ CD8+ T cells from the hematopoietic cell graft. However, T cells specific for miH also contribute to the GVL effect and CD45RA depletion would be expected to compromise antileukemic activity. Using the above approach for isolating miH specific CTL from naïve CD8 T cells, we have found a diverse repertoire of alloreactivity in most cultures and identified a subset of T cell lines and clones specific for miH presented selectively on hematopoietic cells. These T cells recognize primary ALL and AML samples that express the restricting HLA allele in vitro. MiH specific T cell clones can be reliably generated by this method using DC derived from monocytes of patients with advanced leukemia. Thus, it may be feasible to utilize this approach to isolate T cells specific for hematopoietic restricted miH for adoptive therapy as an adjunct to CD45RA depletion to preserve the GVL effect and allow separation of GVL from GVHD.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3534-3534
Author(s):  
Juan F Vera ◽  
Valentina Hoyos ◽  
Barbara Savoldo ◽  
Concetta Quintarelli ◽  
Greta A Giordano ◽  
...  

Abstract Providing a proliferative and survival advantage to tumor-specific cytotoxic T lymphocytes (CTLs) remains a challenge in the adoptive therapy of cancer patients. It is now evident that the in vivo expansion of T cells after adoptive transfer is best accomplished in the lymphodepleted host due to the increased production of endogenous IL15 and IL7, which help restore lymphopoiesis. We have found that antigen activated cytotoxic T lymphocytes (CTLs) directed to tumor associated epitopes (for example derived from EBV, or from cancer testis antigens such as PRAME) down regulate a chain of IL7R, a common γ chain cytokine receptor, impairing their capacity to respond to IL7. We hypothesized that despite receptor downregulation, the signal transduction pathway for IL7R would remain intact in the CTLs so that forced expression of IL7Rα would restore IL7 responsiveness and improve in vivo expansion and survival of CTLs. We used EBV-specific CTLs as our model, and showed in vitro that a functional IL-7Ra molecule can be expressed in CTLs using retroviral gene transfer so that the percentage of receptor + cells increased from 2.4%±0.5% to 50%±20. This modification restored the in vitro proliferation of genetically modified CTLs in response to IL7 so that cell numbers increased from 1×106 cells to 0.1×109 (range, 0.6×108 to 0.3×109)] comparable with the effects of IL2 [from 1×106 cells to 0.7×109 (range, 0.7×107 to 1.6×109)] In contrast, control EBV-CTL with IL7 progressively declined in number (p<0.001) These effects were accomplished without alteration of antigen specificity or responsiveness to other common γ chain cytokines, and cell survival remained antigen dependent. In a xenogeneic mouse model, CTLs expressing IL7Ra significantly expanded in vivo in response to EBV-tumor antigen and the administration of IL7. By day 15, both control CTLs and IL7Ra+ CTLs had modestly proliferated in response to IL-2 (2.3 fold, range 1.1–5.1 for control CTLs, and 2.67 fold, range 0.6 to 8.15 for IL7Ra+ CTLs). In contrast, only IL7Ra+ CTLs significantly expanded in the presence of IL7, showing a 6.09 fold increase (range 0.7 to 25.2) compared to mice that received control CTLs and IL7 (0.9 fold, range 0.5–1.7) (p<0.0001). Modified CTLs also provided enhanced anti-tumor activity. SCID mice engrafted i.p with 3×106 tumor cells marked with Firefly luciferase, showed a rapid increase in signal in the absence of CTLs (Fold increase in luminance = 29.8 median, range 4.4 to 103) by day 14 after tumor engraftment. Similar tumor growth was observed in mice receiving IL7Ra+ CTLs without cytokines (luminance increase14.4 fold, range 1 to 90). In contrast, mice receiving IL7Ra+ CTLs and either IL2 or IL7, had a decline in tumor luminance (fold expansion 0.7, range 0.08 to 2.9, and 0.8, range 0.004 to 3.5, respectively p<0.0001). Although growth of the transgenic T cells remained antigen dependent, as a further safety measure, we incorporated an inducible suicide gene based on icaspase9 that can be activated by exposure to a small chemical inducer of dimerization (CID) (AP20187). Incorporation of this suicide gene did not affect the in vitro or in vivo anti-tumor activity of the CTL’s but allowed them to be rapidly eliminated. So that after a single dose of CID (50 nM) the transgenic population were decreased by >98.5% We conclude that forced expression of the IL-7Ra by CTLs can be used to recapitulate the response of these cells to this cytokine and thereby promote their in vivo anti-tumor activity after adoptive transfer either in a lymphodepleted host or after the administration of the recombinant protein.


Sign in / Sign up

Export Citation Format

Share Document