scholarly journals Physical and Functional Association of the Major Histocompatibility Complex Class I Heavy Chain α3 Domain with the Transporter Associated with Antigen Processing

1998 ◽  
Vol 187 (6) ◽  
pp. 865-874 ◽  
Author(s):  
Kimary Kulig ◽  
Dipankar Nandi ◽  
Igor Bacik ◽  
John J. Monaco ◽  
Stanislav Vukmanovic

CD8+ T lymphocytes recognize antigens as short, MHC class I-associated peptides derived by processing of cytoplasmic proteins. The transporter associated with antigen processing translocates peptides from the cytosol into the ER lumen, where they bind to the nascent class I molecules. To date, the precise location of the class I-TAP interaction site remains unclear. We provide evidence that this site is contained within the heavy chain α3 domain. Substitution of a 15 amino acid portion of the H-2Db α3 domain (aa 219-233) with the analogous MHC class II (H-2IAd) β2 domain region (aa 133-147) results in loss of surface expression which can be partially restored upon incubation at 26°C in the presence of excess peptide and β2-microglobulin. Mutant H-2Db (Db219-233) associates poorly with the TAP complex, and cannot present endogenously-derived antigenic peptides requiring TAP-dependent translocation to the ER. However, this presentation defect can be overcome through use of an ER targeting sequence which bypasses TAP-dependent peptide translocation. Thus, the α3 domain serves as an important site of interaction (directly or indirectly) with the TAP complex and is necessary for TAP-dependent peptide loading and class I surface expression.

2003 ◽  
Vol 10 (2-4) ◽  
pp. 213-226 ◽  
Author(s):  
J. Bruce Sundstrom ◽  
Kimberley C. Jollow ◽  
Veronique Braud ◽  
Francois Villinger ◽  
Andrew J. McMichael ◽  
...  

In this investigation we have explored the relationship between the weak allogenicity of cardiac myocytes and their capacity to present allo-antigens by examining the ability of a human cardiac myocyte cell line (W-1) to process and present nominal antigens. W-1 cells (HLA-A*0201 and HLA-DR β1*0301) pulsed with the influenza A matrix 1 (58-66) peptide (M1) were able to serve as targets for the HLA-A*0201 restricted CTL line PG, specific for M1-peptide. However, PG-CTLs were unable to lyse W-1 target cells infected with a recombinant vaccinia virus expressing the M1 protein (M1-VAC). Pretreatment of these M1-VAC targets with IFN-γ partially restored their ability to process and present the M1 peptide. However, parallel studies demonstrated that IFN-γ pretreated W-1's could not process tetanus toxin (TT) or present the TT(830-843) peptide to HLA-DR3 restricted TT-primed T cells. Semi-quantitative RT-PCR measurements revealed significantly lower constitutive levels of expression for MHC class I, TAP-1/2, and LMP-2/7 genes in W-1s that could be elevated by pretreatment with IFN-γ to values equal to or greater than those expressed in EBV-PBLs. However, mRNA levels for the genes encoding MHC class II, Ii, CIITA, and DMA/B were markedly lower in both untreated and IFN-γ pretreated W-1s relative to EBV-PBLs. Furthermore, pulse-chase analysis of the corresponding genes revealed significantly lower protein levels and longer half-life expression in W-1s relative to EBV-PBLs. These results suggest that weak allogenicity of cardiac myocytes may be governed by their limited expression of MHC genes and gene products critical for antigen processing and presentation.


2006 ◽  
Vol 81 (3) ◽  
pp. 1390-1400 ◽  
Author(s):  
Andre Ortlieb Guerreiro-Cacais ◽  
Mehmet Uzunel ◽  
Jelena Levitskaya ◽  
Victor Levitsky

ABSTRACT The mechanisms of major histocompatibility complex (MHC) class I downregulation during Epstein-Barr virus (EBV) replication are not well characterized. Here we show that in several cell lines infected with a recombinant EBV strain encoding green fluorescent protein (GFP), the virus lytic cycle coincides with GFP expression, which thus can be used as a marker of virus replication. EBV replication resulted in downregulation of MHC class II and all classical MHC class I alleles independently of viral DNA synthesis or late gene expression. Although assembled MHC class I complexes, the total pool of heavy chains, and β2-microglobulin (β2m) were significantly downregulated, free class I heavy chains were stabilized at the surface of cells replicating EBV. Calnexin expression was increased in GFP+ cells, and calnexin and calreticulin accumulated at the cell surface that could contribute to the stabilization of class I heavy chains. Decreased expression levels of another chaperone, ERp57, and TAP2, a transporter associated with antigen processing and presentation, correlated with delayed kinetics of MHC class I maturation. Levels of both class I heavy chain and β2m mRNA were reduced, and metabolic labeling experiments demonstrated a very low rate of class I heavy chain synthesis in lytically infected cells. MHC class I and MHC class II downregulation was mimicked by pharmacological inhibition of protein synthesis in latently infected cells. Our data suggest that although several mechanisms may contribute to MHC class I downregulation in the course of EBV replication, inhibition of MHC class I synthesis plays the primary role in the process.


2003 ◽  
Vol 77 (17) ◽  
pp. 9412-9421 ◽  
Author(s):  
Mamadi Yilla ◽  
Carole Hickman ◽  
Marcia McGrew ◽  
Elizabeth Meade ◽  
William J. Bellini

ABSTRACT Gamma interferon (IFN-γ) induces expression of the gene products of the major histocompatibility complex (MHC), whereas IFN-α/β can interfere with or suppress class II protein expression. In separate studies, measles virus (MV) was reported to induce IFN-α/β and to up-regulate MHC class II proteins. In an attempt to resolve this paradox, we examined the surface expression of MHC class I and class II proteins in MV-infected peripheral monocytes in the presence and absence of IFN-α/β. Infection of purified monocytes with Edmonston B MV resulted in an apparent increase in cell surface expression of HLA-A, -B, and -C class I proteins, but it had no effect on the expression of HLA-DR class II proteins. MV-infected purified monocytes expressed IFN-α/β, but no measurable IFN-γ expression was detected in supernatant fluids. Class II protein expression could be enhanced by coculture of purified monocytes with uninfected peripheral blood mononuclear cell (PBMC) supernatant. MV infection of PBMCs also did not affect expression of class II proteins, but the expression of HLA-A, -B, and -C class I proteins was increased two- to threefold in most donor cells. A direct role for IFN-α/β suppression of MHC class II protein expression was not evident in monocytes since MV suppressed class II protein expression in the absence of IFN-α/β. Taken together, these data suggest that MV interferes with the expression of peptide-loaded class II complexes, an effect that may potentially alter CD4+-T-cell proliferation and the cell-mediated immune responses that they help to regulate.


1995 ◽  
Vol 181 (3) ◽  
pp. 1111-1122 ◽  
Author(s):  
R P Machold ◽  
S Andrée ◽  
L Van Kaer ◽  
H G Ljunggren ◽  
H L Ploegh

Class I major histocompatibility complex molecules require both beta 2-microglobulin (beta 2m) and peptide for efficient intracellular transport. With the exception of H-2Db and Ld, class I heavy chains have not been detectable at the surface of cells lacking beta 2m. We show that properly conformed class I heavy chains can be detected in a terminally glycosylated form indicative of cell surface expression in H-2b, H-2d, and H-2s beta 2m-/- concanavalin A (Con A)-stimulated splenocytes incubated at reduced temperature. Furthermore, we demonstrate the presence of Kb molecules at the surface of beta 2m-/- cells cultured at 37 degrees C. The mode of assembly of class I molecules encompasses two major pathways: binding of peptide to preformed "empty" heterodimers, and binding of peptide to free heavy chains, followed by recruitment of beta 2m. In support of the existence of the latter pathway, we provide evidence for a role of peptide in intracellular transport of free class I heavy chains, through analysis of Con A-stimulated splenocytes from transporter associated with antigen processing 1 (TAP1)-/-, beta 2m-/-, and double-mutant TAP1/beta 2m-/- mice.


1992 ◽  
Vol 175 (1) ◽  
pp. 163-168 ◽  
Author(s):  
F Esquivel ◽  
J Yewdell ◽  
J Bennink

RMA/S is a mutant cell line with decreased cell surface expression of major histocompatibility complex class I molecules that has been reported to be deficient in presenting endogenously synthesized influenza virus nucleoprotein (NP) to cytotoxic T lymphocytes (CTL). In the present study we show that RMA/S cells can present vesicular stomatitis virus nucleocapsid protein, and, under some conditions, NP, to Kb-and Db-restricted CTL, respectively. Antigen presentation results from processing of cytosolic pools of endogenously synthesized proteins, and not the binding to cell surface class I molecules of antigenic peptides present in the virus inoculum or released from infected cells. Antigen processing of RMA/S differs, however, from processing by wild-type cells in requiring greater amounts of antigen, longer times to assemble or transport class I-peptide complexes, and in being more sensitive to blocking by anti-CD8 antibody. Thus, the antigen processing deficit in RMA/S cells is of a partial rather than absolute nature.


1996 ◽  
Vol 184 (6) ◽  
pp. 2153-2166 ◽  
Author(s):  
Lisa K. Denzin ◽  
Craig Hammond ◽  
Peter Cresswell

Major histocompatibility complex (MHC) class II–positive cell lines which lack HLA-DM expression accumulate class II molecules associated with residual invariant (I) chain fragments (class II–associated invariant chain peptides [CLIP]). In vitro, HLA-DM catalyzes CLIP dissociation from class II–CLIP complexes, promoting binding of antigenic peptides. Here the physical interaction of HLA-DM with HLA-DR molecules was investigated. HLA-DM complexes with class II molecules were detectable transiently in cells, peaking at the time when the class II molecules entered the MHC class II compartment. HLA-DR αβ dimers newly released from I chain, and those associated with I chain fragments, were found to associate with HLA-DM in vivo. Mature, peptide-loaded DR molecules also associated at a low level. These same species, but not DR-I chain complexes, were also shown to bind to purified HLA-DM molecules in vitro. HLA-DM interaction was quantitatively superior with DR molecules isolated in association with CLIP. DM-DR complexes generated by incubating HLA-DM with purified DR αβCLIP contained virtually no associated CLIP, suggesting that this superior interaction reflects a prolonged HLA-DM association with empty class II dimers after CLIP dissociation. Incubation of peptide-free αβ dimers in the presence of HLA-DM was found to prolong their ability to bind subsequently added antigenic peptides. Stabilization of empty class II molecules may be an important property of HLA-DM in facilitating antigen processing.


1992 ◽  
Vol 176 (3) ◽  
pp. 729-738 ◽  
Author(s):  
M del Val ◽  
H Hengel ◽  
H Häcker ◽  
U Hartlaub ◽  
T Ruppert ◽  
...  

Selective expression of murine cytomegalovirus (MCMV) immediate-early (IE) genes leads to the presentation by the major histocompatibility complex (MHC) class I molecule Ld of a peptide derived from MCMV IE protein pp89 (Reddehase, M.J., J. B. Rothbard, and U.H. Koszinowski. 1989. Nature (Lond.). 337:651). Characterization of endogenous antigenic peptides identified the pp89 peptide as the nonapeptide 168YPHFMPTNL176 (del Val, M., H.-J. Schlicht, T. Ruppert, M.J. Reddehase, and U.H. Koszinowski. 1991. Cell. 66:1145). Subsequent expression of MCMV early genes prevents presentation of pp89 (del Val, M., K. Münch, M.J. Reddehase, and U.H. Koszinowski. 1989. Cell. 58:305). We report on the mechanism by which MCMV early genes interfere with antigen presentation. Expression of the IE promoter-driven bacterial gene lacZ by recombinant MCMV subjected antigen presentation of beta-galactosidase to the same control and excluded antigen specificity. The Ld-dependent presence of naturally processed antigenic peptides also in nonpresenting cells located the inhibitory function subsequent to the step of antigen processing. The finding that during the E phase of MCMV gene expression the MHC class I heavy chain glycosylation remained in an Endo H-sensitive form suggested a block within the endoplasmic reticulum/cis-Golgi compartment. The failure to present antigenic peptides was explained by a general retention of nascent assembled trimolecular MHC class I complexes. Accordingly, at later stages of infection a significant decrease of surface MHC class I expression was seen, whereas other membrane glycoproteins remained unaffected. Thus, MCMV E genes endow this virus with an effective immune evasion potential. These results also indicate that the formation of the trimolecular complex of MHC class I heavy chain, beta 2-microglobulin, and the finally trimmed peptide is completed before entering the medial-Golgi compartment.


2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Christian Schölz ◽  
Robert Tampé

Abstract A large and dynamic membrane-associated machinery orchestrates the translocation of antigenic peptides into the endoplasmic reticulum (ER) lumen for subsequent loading onto major histocompatibility complex (MHC) class I molecules. The peptide-loading complex ensures that only high-affinity peptides, which guarantee long-term stability of MHC I complexes, are presented to T-lymphocytes. Adaptive immunity is dependent on surface display of the cellular proteome in the form of protein fragments, thus allowing efficient recognition of infected or malignant transformed cells. In this review, we summarize recent findings of antigen translocation by the transporter associated with antigen processing and loading of MHC class I molecules in the ER, focusing on the mechanisms involved in this process.


Blood ◽  
2002 ◽  
Vol 100 (4) ◽  
pp. 1496-1498 ◽  
Author(s):  
Toshio Yabe ◽  
Sumiyo Kawamura ◽  
Masako Sato ◽  
Koichi Kashiwase ◽  
Hidenori Tanaka ◽  
...  

HLA class I expression depends on the formation of a peptide-loading complex composed of class I heavy chain; β2-microglobulin; the transporter associated with antigen processing (TAP); and tapasin, which links TAP to the heavy chain. Defects in TAP result in a class I deficiency called the type I bare lymphocyte syndrome (BLS). In the present study, we examined a subject with a novel type I BLS who does not exhibit apparent TAP abnormalities but who has a tapasin defect. The subject's TAPASIN gene has a 7.4-kilobase deletion between introns 3 and 7; an Alu repeat–mediated unequal homologous recombination may be the cause of the deletion. No tapasin polypeptide was detected in the subject's cells. The cell surface class I expression level in tapasin-deficient cells was markedly reduced but the reduction was not as profound as in TAP-deficient cells. These results suggest that tapasin deficiency is another cause of type I BLS.


Sign in / Sign up

Export Citation Format

Share Document