er targeting
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 33)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 22 (23) ◽  
pp. 13028
Author(s):  
Richard Zimmermann ◽  
Sven Lang ◽  
Monika Lerner ◽  
Friedrich Förster ◽  
Duy Nguyen ◽  
...  

Protein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of around 10,000 different soluble and membrane proteins in humans. It involves the co- or post-translational targeting of precursor polypeptides to the ER, and their subsequent membrane insertion or translocation. So far, three pathways for the ER targeting of precursor polypeptides and four pathways for the ER targeting of mRNAs have been described. Typically, these pathways deliver their substrates to the Sec61 polypeptide-conducting channel in the ER membrane. Next, the precursor polypeptides are inserted into the ER membrane or translocated into the ER lumen, which may involve auxiliary translocation components, such as the TRAP and Sec62/Sec63 complexes, or auxiliary membrane protein insertases, such as EMC and the TMCO1 complex. Recently, the PEX19/PEX3-dependent pathway, which has a well-known function in targeting and inserting various peroxisomal membrane proteins into pre-existent peroxisomal membranes, was also found to act in the targeting and, putatively, insertion of monotopic hairpin proteins into the ER. These either remain in the ER as resident ER membrane proteins, or are pinched off from the ER as components of new lipid droplets. Therefore, the question arose as to whether this pathway may play a more general role in ER protein targeting, i.e., whether it represents a fourth pathway for the ER targeting of precursor polypeptides. Thus, we addressed the client spectrum of the PEX19/PEX3-dependent pathway in both PEX3-depleted HeLa cells and PEX3-deficient Zellweger patient fibroblasts by an established approach which involved the label-free quantitative mass spectrometry of the total proteome of depleted or deficient cells, as well as differential protein abundance analysis. The negatively affected proteins included twelve peroxisomal proteins and two hairpin proteins of the ER, thus confirming two previously identified classes of putative PEX19/PEX3 clients in human cells. Interestingly, fourteen collagen-related proteins with signal peptides or N-terminal transmembrane helices belonging to the secretory pathway were also negatively affected by PEX3 deficiency, which may suggest compromised collagen biogenesis as a hitherto-unknown contributor to organ failures in the respective Zellweger patients.


Author(s):  
Richard Zimmermann ◽  
Sven Lang ◽  
Monika Lerner ◽  
Friedrich G Förster ◽  
Duy Nguyen ◽  
...  

Protein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of about 10,000 different soluble and membrane proteins in humans. It involves co- or post-translational targeting of precursor polypeptides to the ER and their subsequent membrane insertion or translocation. So far, three pathways for ER targeting of precursor polypeptides plus four pathways for ER targeting of mRNAs were described. Typically, these pathways deliver their substrates to the Sec61 polypeptide-conducting channel in the ER membrane. Next, the precursor polypeptides are inserted into the ER membrane or translocated into the ER lumen, which may involve auxiliary translocation components, such as the TRAP and Sec62/Sec63 complexes, or auxiliary membrane protein insertases, such as EMC and the TMCO1 complex. Recently, the PEX19/PEX3-dependent pathway, which has a well-known function in targeting and inserting various peroxisomal membrane proteins into pre-existent peroxisomal membranes, was also found to act in targeting and, putatively, inserting monotopic hairpin proteins into the ER. These either remain in the ER as resident ER membrane proteins or are pinched off from the ER as components of new lipid droplets. Therefore, the question arose if this pathway may play a more general role in ER protein targeting, i.e. represents a fourth pathway for ER targeting of precursor polypeptides. Thus, we addressed the client spectrum of the PEX19/PEX3-dependent pathway in both PEX3-depleted HeLa cells and PEX3-deficient Zellweger patient fibroblasts by an established approach, which involves label-free quantitative mass spectrometry of the total proteome of depleted or deficient cells and differential protein abundance analysis. The negatively affected proteins included twelve peroxisomal proteins and two hairpin proteins of the ER, thus confirming two previously identified classes of putative PEX19/PEX3-clients in human cells. Interestingly, fourteen collagen-related proteins with signal peptides or N-terminal transmembrane helices and belonging to the secretory pathway were also negatively affected by PEX3-deficiency, which may suggest compromised collagen biogenesis as a hitherto unknown contributor to organ failures in the respective Zellweger patients.


2021 ◽  
Vol 28 ◽  
Author(s):  
Hui Qin ◽  
Yiwen Zhang ◽  
Yutao Lou ◽  
Zongfu Pan ◽  
Feifeng Song ◽  
...  

: Estrogen receptors (ERs) are steroid hormone receptors, which belong to a large nuclear receptor family. Endocrine diseases correlate strongly with dysregulated ER signaling. Traditional therapies continue to rely on small molecule inhibitors, including aromatase inhibitors (AIs) and selective estrogen receptor modulators (SERMs), all of which permit acquired resistance to endocrine therapy. Proteolytic targeting chimeras (PROTACs) offer unprecedented potential for solving acquired endocrine resistance. ARV-471, an ER-targeting PROTAC developed by Arvinas, entered clinical trials in 2019 to treat patients suffering from locally advanced or metastatic ER-positive/HER2-negative breast cancer and has since been approved by the US FDA. In this review, we will focus on progress in developing ER-targeting PROTACs from publications and patents aimed at the treatment of endocrine diseases.


2021 ◽  
Vol 22 (21) ◽  
pp. 11871
Author(s):  
A. Manuel Liaci ◽  
Friedrich Förster

Cleavable endoplasmic reticulum (ER) signal peptides (SPs) and other non-cleavable signal sequences target roughly a quarter of the human proteome to the ER. These short peptides, mostly located at the N-termini of proteins, are highly diverse. For most proteins targeted to the ER, it is the interactions between the signal sequences and the various ER targeting and translocation machineries such as the signal recognition particle (SRP), the protein-conducting channel Sec61, and the signal peptidase complex (SPC) that determine the proteins’ target location and provide translocation fidelity. In this review, we follow the signal peptide into the ER and discuss the recent insights that structural biology has provided on the governing principles of those interactions.


Author(s):  
Duo Xu ◽  
Xiaoru Lin ◽  
Xinying Zeng ◽  
Xuejun Wen ◽  
Jingchao Li ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Claudie Bian ◽  
Anna Marchetti ◽  
Philippe Hammel ◽  
Pierre Cosson

Abstract Background Cisd1 and Cisd2 proteins share very similar structures with an N-terminal membrane-anchoring domain and a C-terminal cytosolic domain containing an iron-cluster binding domain and ending with a C-terminal KKxx sequence. Despite sharing a similar structure, Cisd1 and Cisd2 are anchored to different compartments: mitochondria for Cisd1 and endoplasmic reticulum for Cisd2. The aim of this study was to identify the protein motifs targeting Cisd2 to the ER and ensuring its retention in this compartment. Results We used new recombinant antibodies to localize Cisd1 and Cisd2 proteins, as well as various protein chimeras. Cisd2 is targeted to the ER by its N-terminal sequence. It is then retained in the ER by the combined action of a C-terminal COPI-binding KKxx ER retrieval motif, and of an ER-targeting transmembrane domain. As previously reported for Cisd1, Cisd2 can alter the morphology of the compartment in which it accumulates. Conclusion Although they share a very similar structure, Cisd1 and Cisd2 use largely different intracellular targeting motifs to reach their target compartment (mitochondria and endoplasmic reticulum, respectively).


2021 ◽  
Author(s):  
Mashun Onishi ◽  
Koji Okamoto

AbstractMitophagy removes defective or superfluous mitochondria via selective autophagy. In yeast, the pro-mitophagic protein Atg32 localizes to the mitochondrial surface and interacts with the scaffold protein Atg11 to promote degradation of mitochondria. Although Atg32-Atg11 interactions are thought to be stabilized by Atg32 phosphorylation, how this posttranslational modification is regulated remains obscure. Here we show that cells lacking the guided entry of tail-anchored proteins (GET) pathway exhibit reduced Atg32 phosphorylation and Atg32-Atg11 interactions, which can be rescued by additional loss of the ER-resident Ppg1-Far complex, a multi-subunit phosphatase negatively acting in mitophagy. In GET-deficient cells, Ppg1-Far is predominantly localized to mitochondria. An artificial ER anchoring of Ppg1-Far in GET-deficient cells significantly ameliorates defects in Atg32-Atg11 interactions and mitophagy. Moreover, disruption of GET and Msp1, an AAA-ATPase that extracts non-mitochondrial proteins localized to the mitochondrial surface, elicits synthetic defects in mitophagy. Collectively, we propose that the GET pathway mediates ER targeting of Ppg1-Far, thereby preventing dysregulated suppression of mitophagy activation.


2021 ◽  
Vol 9 (7) ◽  
pp. e002258
Author(s):  
Benjamin Wolfson ◽  
Michelle R Padget ◽  
Jeffrey Schlom ◽  
James W Hodge

BackgroundThere are highly effective treatment strategies for estrogen receptor (ER)+, progesterone receptor (PR)+, and HER2+ breast cancers; however, there are limited targeted therapeutic strategies for the 10%–15% of women who are diagnosed with triple-negative breast cancer. Here, we hypothesize that ER targeting drugs induce phenotypic changes to sensitize breast tumor cells to immune-mediated killing regardless of their ER status.MethodsReal-time cell analysis, flow cytometry, qRT-PCR, western blotting, and multiplexed RNA profiling were performed to characterize ER+ and ER− breast cancer cells and to interrogate the phenotypic effects of ER targeting drugs. Sensitization of breast cancer cells to immune cell killing by the tamoxifen metabolite 4-hydroxytamoxifen (4-OHT) and fulvestrant was determined through in vitro health-donor natural killer cell 111IN-release killing assays. A syngeneic tumor study was performed to validate these findings in vivo.ResultsPretreatment with tamoxifen metabolite 4-OHT or fulvestrant resulted in increased natural killer (NK)–mediated cell lysis of both ER+ and ER− breast cancer cells. Through multiplexed RNA profiling analysis of 4-OHT-treated ER+ and ER− cells, we identified increased activation of apoptotic and death receptor signaling pathways and identified G protein-coupled receptor for estrogen (GPR30) engagement as a putative mechanism for immunogenic modulation. Using the specific GPR30 agonist G-1, we demonstrate that targeted activation of GPR30 signaling resulted in increased NK cell killing. Furthermore, we show that knockdown of GPR30 inhibited 4-OHT and fulvestrant mediated increases to NK cell killing, demonstrating this is dependent on GPR30 expression. Moreover, we demonstrate that this mechanism remains active in a 4-OHT-resistant MCF7 cell line, showing that even in patient populations with ER+ tumors that are resistant to the cytotoxic effects of tamoxifen, 4-OHT treatment sensitizes them to immune-mediated killing. Moreover, we find that fulvestrant pretreatment of tumor cells synergizes with the IL-15 superagonist N-803 treatment of NK cells and sensitizes tumor cells to killing by programmed death-ligand 1 (PD-L1) targeting high-affinity natural killer (t-haNK) cells. Finally, we demonstrate that the combination of fulvestrant and N-803 is effective in triple-negative breast cancer in vivo.ConclusionTogether, these findings demonstrate a novel effect of ER targeting drugs on the interaction of ER+ and, surprisingly, ER− tumors cells with the immune system. This study is the first to demonstrate the potential use of ER targeting drugs as immunomodulatory agents in an ER agnostic manner and may inform novel immunotherapy strategies in breast cancer.


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Nan Liu ◽  
Hongyu Zhao ◽  
Yan G. Zhao ◽  
Junjie Hu ◽  
Hong Zhang

Dynamic targeting of the ULK1 complex to the ER is crucial for initiating autophagosome formation and for subsequent formation of ER–isolation membrane (IM; autophagosomal precursor) contact during IM expansion. Little is known about how the ULK1 complex, which comprises FIP200, ULK1, ATG13, and ATG101 and does not exist as a constitutively coassembled complex, is recruited and stabilized on the ER. Here, we demonstrate that the ER-localized transmembrane proteins Atlastin 2 and 3 (ATL2/3) contribute to recruitment and stabilization of ULK1 and ATG101 at the FIP200-ATG13–specified autophagosome formation sites on the ER. In ATL2/3 KO cells, formation of FIP200 and ATG13 puncta is unaffected, while targeting of ULK1 and ATG101 is severely impaired. Consequently, IM initiation is compromised and slowed. ATL2/3 directly interact with ULK1 and ATG13 and facilitate the ATG13-mediated recruitment/stabilization of ULK1 and ATG101. ATL2/3 also participate in forming ER–IM tethering complexes. Our study provides insights into the dynamic assembly of the ULK1 complex on the ER for autophagosome formation.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1021-A1022
Author(s):  
Lyndsey Crump ◽  
Jennifer K Richer ◽  
Weston Porter ◽  
Traci Lyons

Abstract Background: The majority of all breast cancers (BC) are estrogen receptor positive (ER+). While ER-targeting endocrine therapies have improved patient survival, many of these tumors develop drug resistance and recur within 20 years. Therefore, novel targets are needed to predict for recurrence and to treat recurrent ER+BC. Previous reports describe a tumor-promotional role for Semaphorin 7A (SEMA7A) in ER- disease; yet, the role of SEMA7A in ER+ disease is poorly characterized. Hypothesis: SEMA7A promotes cell survival and drug resistance in ER+ BC. Methods: We overexpressed SEMA7A in ER+ BC cells, then used the ER-targeting agents tamoxifen and fulvestrant to test how SEMA7A-expressing cells respond to endocrine therapy. In vitro, we used proliferation and cell survival assays. In vivo, we implanted ER+ BC cells, then treated the animals with fulvestrant to measure how SEMA7A affects tumor growth and metastasis. We also utilized drug resistant cells, which have high endogenous SEMA7A levels, to measure markers of stemness and multi-drug resistance via flow cytometry. Results: We first found that SEMA7A expression correlates with decreased relapse free survival in patients with ER+BC who received endocrine therapy (Kmplotter; p=0.042). We also observe that SEMA7A is hormonally regulated in ER+BC, but its expression does not uniformly decrease with endocrine therapy agents. Instead, long term estrogen deprivation and ER-targeting drug treatments increase SEMA7A expression, likely through the action of other hormone receptors such as the androgen receptor, which also increases with long term estrogen deprivation. Further, in ER+ cell lines, overexpression of SEMA7A promotes in vitro growth in the face of estrogen-deprivation, tamoxifen, or fulvestrant treatments. In vivo, SEMA7A promotes fulvestrant resistance in the primary tumor and induces lung metastases. Finally, we report that pro-survival signaling is a therapeutic vulnerability of ER+SEMA7A+ tumors. Conclusion: These studies describe that SEMA7A promotes drug resistance in ER+ BC. We propose that targeting pro-survival signaling may prove efficacious for treating SEMA7A+ tumors, which are less likely to respond to endocrine therapies.


Sign in / Sign up

Export Citation Format

Share Document