scholarly journals Distinct Role of Antigen-Specific T Helper Type 1 (Th1) and Th2 Cells in Tumor Eradication in Vivo

1999 ◽  
Vol 190 (5) ◽  
pp. 617-628 ◽  
Author(s):  
Takashi Nishimura ◽  
Kenji Iwakabe ◽  
Masashi Sekimoto ◽  
Yasushi Ohmi ◽  
Takashi Yahata ◽  
...  

The role of T helper type 1 (Th1) and Th2 cells in tumor immunity was investigated using Th cells induced from ovalbumin (OVA)-specific T cell receptor transgenic mice. Although Th1 cells exhibited stronger cytotoxicity than Th2 cells, both cell types completely eradicated tumors when transferred into mice bearing A20 tumor cells transfected with the OVA gene (A20-OVA). Th1 cells eradicated the tumor mass by inducing cellular immunity, whereas Th2 cells destroyed the tumor by inducing tumor necrosis. Both Th1 and Th2 cells required CD8+ T cells to eliminate tumors, and neither of these cells were able to completely eliminate A20-OVA tumors from T and B cell–deficient RAG2−/− mice. Mice cured from tumors by Th1 and Th2 cell therapy rejected A20-OVA upon rechallenge, but CD8+ cytotoxic T lymphocytes were induced only from spleen cells prepared from cured mice by Th1 cell therapy. Moreover, we demonstrated that Th1 and Th2 cells used distinct adhesion mechanisms during tumor eradication: the leukocyte function-associated antigen (LFA)-1–dependent cell–cell adhesion step was essential for Th1 cell therapy, but not for Th2 cell therapy. These findings demonstrated for the first time the distinct role of antigen-specific Th1 and Th2 cells during eradication of established tumors in vivo.

1996 ◽  
Vol 184 (2) ◽  
pp. 473-483 ◽  
Author(s):  
T Sornasse ◽  
P V Larenas ◽  
K A Davis ◽  
J E de Vries ◽  
H Yssel

The development of CD4+ T helper (Th) type 1 and 2 cells is essential for the eradication of pathogens, but can also be responsible for various pathological disorders. Therefore, modulation of Th cell differentiation may have clinical utility in the treatment of human disease. Here, we show that interleukin (IL) 12 and IL-4 directly induce human neonatal CD4- T cells, activated via CD3 and CD28, to differentiate into Th1 and Th2 subsets. In contrast, IL-13, which shares many biological activities with IL-4, failed to induce T cell differentiation, consistent with the observation that human T cells do not express IL-13 receptors. Both the IL-12-induced Th1 subset and the IL-4-induced Th2 subset produce large quantities of IL-10, confirming that human IL-10 is not a typical human Th2 cytokine. Interestingly, IL-4-driven Th2 cell differentiation was completely prevented by an IL-4 mutant protein (IL-4.Y124D), indicating that this molecule acts as a strong IL-4 receptor antagonist. Analysis of single T cells producing interferon gamma or IL-4 revealed that induction of Th1 cell differentiation occurred rapidly and required only 4 d of priming of the neonatal CD4+ T cells in the presence of IL-12. The IL-12-induced Th1 cell phenotype was stable and was not significantly affected when repeatedly stimulated in the presence of recombinant IL-4. In contrast, the differentiation of Th2 cells occurred slowly and required not only 6 d of priming, but also additional restimulation of the primed CD4+ T cells in the presence of IL-4. Moreover, IL-4-induced Th2 cell phenotypes were not stable and could rapidly be reverted into a population predominantly containing Th0 and Th1 cells, after a single restimulation in the presence of IL-12. The observed differences in stability of IL-12- and IL-4-induced human Th1 and Th2 subsets, respectively, may have implications for cytokine-based therapies of chronic disease.


1998 ◽  
Vol 188 (8) ◽  
pp. 1485-1492 ◽  
Author(s):  
Damo Xu ◽  
Woon Ling Chan ◽  
Bernard P. Leung ◽  
David Hunter ◽  
Kerstin Schulz ◽  
...  
Keyword(s):  
T Helper ◽  
Th2 Cell ◽  
A Cell ◽  

Interleukin (IL)-18 induces interferon (IFN)-γ synthesis and synergizes with IL-12 in T helper type 1 (Th1) but not Th2 cell development. We report here that IL-18 receptor (IL-18R) is selectively expressed on murine Th1 but not Th2 cells. IL-18R mRNA was expressed constitutively and consistently in long-term cultured clones, as well as on newly polarized Th1 but not Th2 cells. IL-18 sustained the expression of IL-12Rβ2 mRNA, indicating that IL-18R transmits signals that maintain Th1 development through the IL-12R complex. In turn, IL-12 upregulated IL-18R mRNA. Antibody against an IL-18R–derived peptide bound Th1 but not Th2 clones. It also labeled polarized Th1 but not Th2 cells derived from naive ovalbumin–T cell antigen receptor-αβ transgenic mice (D011.10). Anti–IL-18R antibody inhibited IL-18– induced IFN-γ production by Th1 clones in vitro. In vivo, anti–IL-18R antibody reduced local inflammation and lipopolysaccharide-induced mortality in mice. This was accompanied by shifting the balance from Th1 to Th2 responses, manifest as decreased IFN-γ and proinflammatory cytokine production and increased IL-4 and IL-5 synthesis. Therefore, these data provide a direct mechanism for the selective effect of IL-18 on Th1 but not Th2 cells. They also show that the synergistic effect of IL-12 and IL-18 on Th1 development may be due to the reciprocal upregulation of their receptors. Furthermore, IL-18R is a cell surface marker distinguishing Th1 from Th2 cells and may be a therapeutic target.


2003 ◽  
Vol 94 (10) ◽  
pp. 924-928 ◽  
Author(s):  
Kenji Chamoto ◽  
Akemi Kosaka ◽  
Takemasa Tsuji ◽  
Junko Matsuzaki ◽  
Takeshi Sato ◽  
...  

2003 ◽  
Vol 10 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Vanessa Ubaldi ◽  
Lucia Gatta ◽  
Luigia Pace ◽  
Gino Doria ◽  
Claudio Pioli

CTLA-4 deficient mice show severe lymphoproliferative disorders with T helper sub-population skewed toward the Th2 phenotype. In the present work, we investigated the role of CTLA-4 in T helper cell subset differentiation. Naïve CD4+cells were stimulated with anti-CD3 and anti-CD28 mAbs in the presence of either IL-12 or IL-4 to induce polarisation to Th1 or Th2 cells, respectively. Under these two polarising conditions cells express comparable levels of CTLA-4. CTLA-4 was stimulated by plastic-bound mAb. The frequency of IFN-γ- and IL-4-producing cells were estimated by FACS analysis. In parallel cultures, polarised Th1 and Th2 cells were re-stimulated with anti-CD3 and anti-CD28 mAbs for 48 h and their culture supernatants analysed by ELISA. Results show that CTLA-4 engagement during differentiation inhibits polarisation of naïve CD4+cells to the Th2 but not the Th1 cell subset. At variance, once cells are polarised, CTLA-4 engagement inhibits cytokine production in both effector Th2 and Th1 cells. Altogether these data indicate that CTLA-4 may interfere not only in the signalling involved in acute transcriptional activation of both Th1 and Th2 cells but also in the development of one of the Th cell subsets.


Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 553-560 ◽  
Author(s):  
Naoki Tokumasa ◽  
Akira Suto ◽  
Shin-ichiro Kagami ◽  
Shunsuke Furuta ◽  
Koichi Hirose ◽  
...  

Abstract It is well documented that dendritic cells (DCs), representative antigen-presenting cells, are important sources of Th1-promoting cytokines and are actively involved in the regulation of T-helper–cell differentiation. However, the intracellular event that regulates this process is still largely unknown. In this study, we examined the role of Tyk2, a JAK kinase that is involved in the signaling pathway under IL-12 and IL-23, in DC functions. While the differentiation and maturation of DCs was normal in Tyk2-deficient (Tyk2−/−) mice, IL-12–induced Stat4 phosphorylation was diminished in Tyk2−/− DCs. IL-12–induced IFN-γ production was also significantly diminished in Tyk2−/− DCs to levels similar to those in Stat4−/− DCs. Interestingly, Tyk2−/− DCs were defective in IL-12 and IL-23 production upon stimulation with CpG ODN. Furthermore, Tyk2−/− DCs were impaired in their ability to induce Th1-cell differentiation but not Th2-cell differentiation. Taken together, these results indicate that the expression of Tyk2 in DCs is crucial for the production of Th1-promoting cytokines such as IL-12 and IFN-γ from DCs and thereby for the induction of antigen-specific Th1-cell differentiation.


1998 ◽  
Vol 188 (6) ◽  
pp. 1191-1196 ◽  
Author(s):  
Mark H. Kaplan ◽  
Andrea L. Wurster ◽  
Michael J. Grusby

The differentiation of T helper (Th) cells is regulated by members of the signal transducer and activator of transcription (STAT) family of signaling molecules. We have generated mice lacking both Stat4 and Stat6 to examine the ability of Th cells to develop in the absence of these two transcription factors. Stat4, Stat6−/− lymphocytes fail to differentiate into interleukin (IL)-4–secreting Th2 cells. However, in contrast to Stat4−/− lymphocytes, T cells from Stat4, Stat6−/− mice produce significant amounts of interferon (IFN)-γ when activated in vitro. Although Stat4, Stat6−/− lymphocytes produce less IFN-γ than IL-12–stimulated control lymphocytes, equivalent numbers of IFN-γ–secreting cells can be generated from cultures of Stat4, Stat6−/− lymphocytes activated under neutral conditions and control lymphocytes activated under Th1 cell–promoting conditions. Moreover, Stat4, Stat6−/− mice are able to mount an in vivo Th1 cell–mediated delayed-type hypersensitivity response. These results support a model of Th cell differentiation in which the generation of Th2 cells requires Stat6, whereas a Stat4-independent pathway exists for the development of Th1 cells.


1996 ◽  
Vol 271 (5) ◽  
pp. R1344-R1352 ◽  
Author(s):  
M. Fleshner ◽  
F. X. Brennan ◽  
K. Nguyen ◽  
L. R. Watkins ◽  
S. F. Maier

Exposure to stressors can affect various aspects of immune function, including the antibody response. We have previously reported that rats exposed to an acute session of inescapable tail shock (IS) show long-term reductions in anti-keyhole limpet hemocyanin (KLH) immunoglobulin (Ig) M and IgG and a failure to expand Th1-like cells in response to KLH. To further investigate the potential role of decreased Th1-like cells in the IS-induced reduction of anti-KLH Ig, we examined two isotypes of IgG, IgG1 and IgG2a. Isotype switching is under cytokine control. Interleukin-4 helps B cells switch from making IgM to making IgG1, whereas interferon (IFN)-gamma helps B cells switch from making IgM to making IgG2a. In this paper we report that IS exposure reduces IFN-gamma levels 4 days after exposure to IS+KLH compared with immunized home cage controls. In addition, IS exposure reduced the Th1 cytokine-sensitive anti-KLH IgG2a but not Th2 cytokine-sensitive anti-KLH IgG1. This pattern of isotype reduction suggests that a failure to expand the Th1 cell, which results in less IFN-gamma, may contribute to the the IS-induced reduction in anti-KLH Ig. Glucocorticoids (GCs) differentially regulate Th1 and Th2 cells. Administration of the type II GC receptor antagonist RU-486 before IS blocked the IS-induced suppression in anti-KLH IgM, IgG, and IgG2a. Corticosterone (2.5 mg/kg), however, did not produce the suppression in anti-KLH Ig. These results support a role of corticosterone in mediating IS-induced reductions in in vivo antibody.


2021 ◽  
Author(s):  
◽  
Marcus James Robinson

<p>Food allergy, defined as an adverse immune response to food, is increasing in prevalence. It can be broadly separated into phases of sensitization, in which allergy-triggering Immunoglobulin E (IgE) is generated, and the post-sensitization allergic response, in which the allergic response is triggered by sensitizing allergen. While much is known about the specific mediators that cause allergies, the immune processes that underlie disease progression are less clear. This project has employed mouse models of Th2 immunity to clarify the factors involved in the initiation and maintenance of allergic disease.  At the centre of allergic disease is the Interleukin (IL)-4-producing CD4+ T helper type 2 (Th2) cell. One of the key inducers of Th2 cell development in vitro is IL-4, but its involvement in Th2 cell development in vivo is controversial. In our studies, we saw that Th2 cell development could be initiated in vivo by primary, adjuvant-free allergen immunisation in the absence of IL-4. However, Th2 cells were more frequent in IL-4-sufficient conditions. We also determined that genetic lesions that result in loss of one, or both, IL-4 alleles impaired the Th2 cell-mediated allergic process, such that IL-4-heterozygous mice can be considered haplo-insufficient for IL-4 in allergic disease contexts.  In addition to the generation of IgE antibody, Th2 cells are implicated in the post-sensitization phase of allergy. Multiple oral challenges of sensitized mice induces elevations in Th2-associated cytokines and elevates intestinal mast cell frequencies. It was the second aim of this project to clarify the role of CD4+ T cells in the post-sensitization intestinal allergic process. We demonstrate a key role for CD4+ T cells in this jejunal mast cell recruitment, and identify that this is required in addition to their established contribution to IgE production. Our investigations also reveal a previously unappreciated role for the CD4+ T cell-derived cytokine IL-3 in oral food allergy. These findings suggest that intestinally localised mast cell-inducer Th2 (Th2m) cells are required for allergic responses generated in the intestine. We also investigated whether specific components of ruminant milks influence the allergic process. While goat and cow milks share significant protein homology, goat milk has lower sensitizing and response-evoking capacity, or allergenicity, than cow milk, in numerous experimental systems. In this project, we compared dominant allergens purified from cow and goat milks for their ability to initiate Th2 cell development. We also examined the ability of one of these allergens to initiate the intestinal allergic process. In these studies, we observed similar Th2 cell development and intestinal mast cell activity in response to both cow and goat milk proteins. These responses indicate that the intrinsic allergenicity of the proteins analysed is not sufficient to explain the differential allergenicity attributed to cow and goat milk.  These studies examine the endogenous and exogenous factors that contribute to the development of allergic disease. This project clarifies the role of IL-4 in in vivo Th2 cell development, identifies functional segregation of CD4+ Th2 cells in the intestinal allergic process and further illustrates some of the similarities in the allergenicity of isolated cow and goat milk proteins. Collectively, these studies uncover fundamental aspects of the allergic process which may be useful targets for disease intervention in both prophylactic and therapeutic settings.</p>


2000 ◽  
Vol 165 (10) ◽  
pp. 5495-5501 ◽  
Author(s):  
Francesca Fallarino ◽  
Ursula Grohmann ◽  
Roberta Bianchi ◽  
Carmine Vacca ◽  
Maria C. Fioretti ◽  
...  

2000 ◽  
Vol 191 (2) ◽  
pp. 375-380 ◽  
Author(s):  
Hisaya Akiba ◽  
Yasushi Miyahira ◽  
Machiko Atsuta ◽  
Kazuyoshi Takeda ◽  
Chiyoko Nohara ◽  
...  

Infection of inbred mouse strains with Leishmania major is a well characterized model for analysis of T helper (Th)1 and Th2 cell development in vivo. In this study, to address the role of costimulatory molecules CD27, CD30, 4-1BB, and OX40, which belong to the tumor necrosis factor receptor superfamily, in the development of Th1 and Th2 cells in vivo, we administered monoclonal antibody (mAb) against their ligands, CD70, CD30 ligand (L), 4-1BBL, and OX40L, to mice infected with L. major. Whereas anti-CD70, anti-CD30L, and anti–4-1BBL mAb exhibited no effect in either susceptible BALB/c or resistant C57BL/6 mice, the administration of anti-OX40L mAb abrogated progressive disease in BALB/c mice. Flow cytometric analysis indicated that OX40 was expressed on CD4+ T cells and OX40L was expressed on CD11c+ dendritic cells in the popliteal lymph nodes of L. major–infected BALB/c mice. In vitro stimulation of these CD4+ T cells showed that anti-OX40L mAb treatment resulted in substantially reduced production of Th2 cytokines. Moreover, this change in cytokine levels was associated with reduced levels of anti–L. major immunoglobulin (Ig)G1 and serum IgE. These results indicate that anti-OX40L mAb abrogated progressive leishmaniasis in BALB/c mice by suppressing the development of Th2 responses, substantiating a critical role of OX40–OX40L interaction in Th2 development in vivo.


Sign in / Sign up

Export Citation Format

Share Document