immunogenic tumor
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A705-A705
Author(s):  
Shuyang Qin ◽  
Booyeon Han ◽  
Alexander Chacon ◽  
Alexa Melucci ◽  
Alyssa Williams ◽  
...  

BackgroundDespite recent advancements in systemic therapy, only a minority of metastatic patients develop meaningful clinical responses to immune checkpoint inhibitors. Inherent genetic instability of melanoma generates genomically and microenvironmentally distinct metastases. These different tumor microenvironments (TMEs) contain numerous T cell suppression mechanisms, such as upregulation of the PD-1/PD-L1 exhaustion pathway. However, as synchronous metastases share one host immune system, intertumoral heterogeneity may result in increasing cross-talk between metastases that impairs systemic antitumor immunity and promotes PD-1 immunotherapy resistance.MethodsYUMM 1.7 (less immunogenic) and YUMMER 1.7 (more immunogenic cell line derived from YUMM following UVB irradiation) melanoma cell lines were simultaneously injected into opposite flanks of the same mice as a model of synchronous melanoma. We assessed tumor growth in wildtype, interferon-gamma (IFN-γ) knockout, and CD8-depleted mice as well as in response to PD-1 inhibitor. We characterized the TME with flow cytometry and performed TCR sequencing on tumor-infiltrating CD8 T cells.ResultsDistinct TMEs were observed for YUMM and YUMMER tumors simultaneously grown in the same mouse. The presence of the less immunogenic YUMM tumor allows the more immunogenic YUMMER tumors to escape IFN-γ and CD8 T cell-mediated rejection, despite abundant tumor-infiltrating, clonally expanded CD8 T cells. Identical immunodominant CD8 T cell clones were found in both YUMM and YUMMER tumors within the same mouse. Synchronous YUMMER-infiltrating CD8 T cells exhibit suppressed phenotypes, including increased persistence of surface PD-1 and decreased surface CD107a expressions. Simultaneously, these synchronous YUMMER tumors additionally upregulate macrophage surface PD-L1 expression, which potentially contributes to tumor immune escape. Lastly, synchronous YUMMER tumors become resistant to PD-1 inhibition, in direct contrast to control YUMMER tumors.ConclusionsIn a host with multiple melanoma lesions, immunogenicity of all tumors contribute to the systemic antitumor immune response. We show that two synchronous tumors with synonymous mutations (<40%), as is the case with metastatic patients, lead to skewed CD8 T cell expansion of the same clones in both tumors. The presence of a less immunogenic tumor prevents CD8 and IFN-γ mediated rejection of the more immunogenic tumor. Furthermore, CD8 T cells in the more immunogenic tumor exhibit decreased effector function and increased resistance to PD-1 blockade, as tumor-infiltrating macrophages concurrently become more immunosuppressive. These results are highly suggestive of a “reverse abscopal effect,” by which immunologically “cold” tumors generate systemic immunosuppression that facilitate PD-1 immunotherapy resistance and immune escape of all other tumors in synchronous metastatic melanoma patients.AcknowledgementsWe would like to thank Dr. Marcus Bosenberg from the Department of Dermatology at Yale University for kindly gifting us with the YUMMER 1.7 murine melanoma cell line.Ethics ApprovalAnimal experiments were approved by the University Committee on Animal Resources and performed in accordance with University of Rochester approved guidelines.


Author(s):  
Amin Jajarmi ◽  
Dumitru Baleanu ◽  
Kianoush Zarghami Vahid ◽  
Saleh Mobayen

2021 ◽  
Author(s):  
Tiziana Franceschetti ◽  
Qingchuan Zhao ◽  
Krystel Vincent ◽  
Claude Perreault ◽  
Slavoljub Milosevic ◽  
...  

2021 ◽  
pp. candisc.0555.2020
Author(s):  
Jeremy Bigot ◽  
Ana I Lalanne ◽  
Francesca Lucibello ◽  
Paul Gueguen ◽  
Alexandre Houy ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1626
Author(s):  
Sergej Tomić ◽  
Anđelija Petrović ◽  
Nevena Puač ◽  
Nikola Škoro ◽  
Marina Bekić ◽  
...  

Autologous dendritic cells (DCs)-based vaccines are considered quite promising for cancer immunotherapy due to their exquisite potential to induce tumor antigen-specific cytotoxic T cells. However, a lack of efficient protocols for inducing immunogenic tumor antigens limits the efficacy of DC-based cancer vaccines. Here, we found that a plasma-activated medium (PAM) induces immunogenic cell death (ICD) in tumor cells but not in an immortalized L929 cell line or human peripheral blood mononuclear cells. PAM induced an accumulation of reactive oxygen species (ROS), autophagy, apoptosis, and necrosis in a concentration-dependent manner. The tumor lysates prepared after PAM treatment displayed increased immunogenicity in a model of human monocyte-derived DCs, compared to the lysates prepared by a standard freezing/thawing method. Mature DCs loaded with PAM lysates showed an increased maturation potential, as estimated by their increased expression of CD83, CD86, CD40, IL-12/IL-10 production, and attenuated PDL1 and ILT-4 expression, compared to the DCs treated with control tumor lysates. Moreover, in co-culture with allogeneic T cells, DCs loaded with PAM-lysates increased the proportion of cytotoxic IFN-γ+ granzyme A+ CD8+ T cells and IL-17A-producing T cells and preserved the Th1 response. In contrast, control tumor lysates-treated DCs increased the frequency of Th2 (CD4+IL-4+), CD4, and CD8 regulatory T cell subtypes, none of which was observed with DCs loaded with PAM-lysates. Cumulatively, these results suggest that the novel method for preparing immunogenic tumor lysates with PAM could be suitable for improved DC-based immunotherapy of cancer patients.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3747
Author(s):  
Hiroaki Wakiyama ◽  
Aki Furusawa ◽  
Ryuhei Okada ◽  
Fuyuki Inagaki ◽  
Takuya Kato ◽  
...  

Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective cancer treatment that employs an antibody photoabsorber conjugate (APC) composed of a targeting monoclonal antibody (mAb) conjugated with a photoactivatable phthalocyanine-derivative dye. Once injected and allowed to bind to a tumor, the APC is activated by local near-infrared light which kills cancer cells and induces a strong immune response in the tumor microenvironment by unmasking of new tumor antigens emerging from damaged tumor cells. Due to its ability to incite an immune reaction, even in poorly immunogenic tumors, NIR-PIT has the potential to enhance immunogenicity in tumors especially after immune checkpoint inhibition. In this study, we employ a poorly immunogenic MOC2-luc syngeneic tumor model and evaluate the efficacy of cancer-targeting CD44-targeted NIR-PIT. Increased infiltration of CD8+ T cells observed after NIR-PIT suggested an enhanced immune environment. Next, we evaluated tumor progression and survival after the combination of CD44-targeted NIR-PIT and short-term administration of an anti-PD1 immune checkpoint inhibitor (ICI) to further activate CD8+ T cells. Additionally, in mice in which the tumors were eradicated by this combination therapy, a re-challenge with fresh MOC2-luc cells demonstrated failure of tumor implantation implying acquired long-term immunity against the cancer cells. Combination therapy decreased tumor progression and prolonged survival significantly. Therefore, we concluded that NIR-PIT was able to convert a minimally immunogenic tumor unresponsive to anti-PD-1 ICI into a highly immunogenic tumor responsive to anti-PD-1 ICI, and this therapy was capable of inducing long-term immunity against the treated cancer.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Yang Liu ◽  
Jing Cai ◽  
Wenfeng Liu ◽  
Yuan Lin ◽  
Li Guo ◽  
...  

AbstractReversing the highly immunosuppressive tumor microenvironment (TME) is essential to achieve long-term efficacy with cancer immunotherapy. Despite the impressive clinical response to checkpoint blockade in multiple types of cancer, only a minority of patients benefit from this approach. Here, we report that the oncolytic virus M1 induces immunogenic tumor cell death and subsequently restores the ability of dendritic cells to prime antitumor T cells. Intravenous injection of M1 disrupts immune tolerance in the privileged TME, reprogramming immune-silent (cold) tumors into immune-inflamed (hot) tumors. M1 elicits potent CD8+ T cell-dependent therapeutic effects and establishes long-term antitumor immune memory in poorly immunogenic tumor models. Pretreatment with M1 sensitizes refractory tumors to subsequent checkpoint blockade by boosting T-cell recruitment and upregulating the expression of PD-L1. These findings reveal the antitumor immunological mechanism of the M1 virus and indicated that oncolytic viruses are ideal cotreatments for checkpoint blockade immunotherapy.


2020 ◽  
Vol 8 (2) ◽  
pp. e000691 ◽  
Author(s):  
Kelly-Anne Masterman ◽  
Oscar L Haigh ◽  
Kirsteen M Tullett ◽  
Ingrid M Leal-Rojas ◽  
Carina Walpole ◽  
...  

BackgroundDendritic cells (DCs) are crucial for the efficacy of cancer vaccines, but current vaccines do not harness the key cDC1 subtype required for effective CD8+ T-cell-mediated tumor immune responses. Vaccine immunogenicity could be enhanced by specific delivery of immunogenic tumor antigens to CD141+ DCs, the human cDC1 equivalent. CD141+ DCs exclusively express the C-type-lectin-like receptor CLEC9A, which is important for the regulation of CD8+ T cell responses. This study developed a new vaccine that harnesses a human anti-CLEC9A antibody to specifically deliver the immunogenic tumor antigen, NY-ESO-1 (New York esophageal squamous cell carcinoma 1), to human CD141+ DCs. The ability of the CLEC9A-NY-ESO-1 antibody to activate NY-ESO-1-specific naïve and memory CD8+ T cells was examined and compared with a vaccine comprised of a human DEC-205-NY-ESO-1 antibody that targets all human DCs.MethodsHuman anti-CLEC9A, anti-DEC-205 and isotype control IgG4 antibodies were genetically fused to NY-ESO-1 polypeptide. Cross-presentation to NY-ESO-1-epitope-specific CD8+ T cells and reactivity of T cell responses in patients with melanoma were assessed by interferon γ (IFNγ) production following incubation of CD141+ DCs and patient peripheral blood mononuclear cells with targeting antibodies. Humanized mice containing human DC subsets and a repertoire of naïve NY-ESO-1-specific CD8+ T cells were used to investigate naïve T cell priming. T cell effector function was measured by expression of IFNγ, MIP-1β, tumor necrosis factor and CD107a and by lysis of target tumor cells.ResultsCLEC9A-NY-ESO-1 antibodies (Abs) were effective at mediating delivery and cross-presentation of multiple NY-ESO-1 epitopes by CD141+ DCs for activation of NY-ESO-1-specific CD8+ T cells. When benchmarked to NY-ESO-1 conjugated to an untargeted control antibody or to anti-human DEC-205, CLEC9A-NY-ESO-1 was superior at ex vivo reactivation of NY-ESO-1-specific T cell responses in patients with melanoma. Moreover, CLEC9A-NY-ESO-1 induced priming of naïve NY-ESO-1-specific CD8+ T cells with polyclonal effector function and potent tumor killing capacity in vitro.ConclusionsThese data advocate human CLEC9A-NY-ESO-1 Ab as an attractive strategy for specific targeting of CD141+ DCs to enhance tumor immunogenicity in NY-ESO-1-expressing malignancies.


Sign in / Sign up

Export Citation Format

Share Document