scholarly journals Phosphorylated Peptides Are Naturally Processed and Presented by Major Histocompatibility Complex Class I Molecules in Vivo

2000 ◽  
Vol 192 (12) ◽  
pp. 1755-1762 ◽  
Author(s):  
Angela L. Zarling ◽  
Scott B. Ficarro ◽  
Forest M. White ◽  
Jeffrey Shabanowitz ◽  
Donald F. Hunt ◽  
...  

Posttranslational modification of peptide antigens has been shown to alter the ability of T cells to recognize major histocompatibility complex (MHC) class I–restricted peptides. However, the existence and origin of naturally processed phosphorylated peptides presented by MHC class I molecules have not been explored. By using mass spectrometry, significant numbers of naturally processed phosphorylated peptides were detected in association with several human MHC class I molecules. In addition, CD8+ T cells could be generated that specifically recognized a phosphorylated epitope. Thus, phosphorylated peptides are part of the repertoire of antigens available for recognition by T cells in vivo.

1997 ◽  
Vol 186 (11) ◽  
pp. 1809-1818 ◽  
Author(s):  
Marco Colonna ◽  
Francisco Navarro ◽  
Teresa Bellón ◽  
Manuel Llano ◽  
Pilar García ◽  
...  

Natural killer (NK) cell–mediated lysis is negatively regulated by killer cell inhibitory receptors specific for major histocompatibility complex (MHC) class I molecules. In this study, we characterize a novel inhibitory MHC class I receptor of the immunoglobulin-superfamily, expressed not only by subsets of NK and T cells, but also by B cells, monocytes, macrophages, and dendritic cells. This receptor, called Ig-like transcript (ILT)2, binds MHC class I molecules and delivers a negative signal that inhibits killing by NK and T cells, as well as Ca2+ mobilization in B cells and myelomonocytic cells triggered through the B cell antigen receptor and human histocompatibility leukocyte antigens (HLA)–DR, respectively. In addition, myelomonocytic cells express receptors homologous to ILT2, which are characterized by extensive polymorphism and might recognize distinct HLA class I molecules. These results suggest that diverse leukocyte lineages have adopted recognition of self–MHC class I molecules as a common strategy to control cellular activation during an immune response.


2000 ◽  
Vol 74 (11) ◽  
pp. 5363-5367 ◽  
Author(s):  
Karin E. Peterson ◽  
Michihiro Iwashiro ◽  
Kim J. Hasenkrug ◽  
Bruce Chesebro

ABSTRACT Recovery from leukemia induced by Friend virus complex (FV) requires strong CD4+ helper, CD8+ cytotoxic T-lymphocyte, and B-cell responses. The development of these immune responses is dependent on the major histocompatibility complex (MHC) (H-2) genotype of the mouse. InH-2b/b mice, which spontaneously recover from FV-induced erythroleukemia, neutralization of gamma interferon (IFN-γ) in vivo inhibited recovery, which indicated that IFN-γ was a necessary component of the immune response to FV. Furthermore, inH-2b/b mice, high numbers of IFN-γ-producing cells were detected after FV infection, whereas inH-2a/b mice, which have a low-recovery phenotype, only low numbers of IFN-γ-producing cells were detected. Similarly, H-2bm14/b mice, which cannot recover from FV infection due to a point mutation in one allele of theH-2Db gene, also had low numbers of IFN-γ-producing T cells. Surprisingly, this effect was observed for both CD8+ and CD4+ T cells. These findings reveal a novel influence of MHC class I genes on CD4+T-cell responses to viral infection. Furthermore, the influence of MHC class I genotype on the generation of both IFN-γ-producing CD4+ and CD8+ T cells helps explain the major impact of the H-2D gene on recovery from FV disease.


1993 ◽  
Vol 178 (6) ◽  
pp. 1971-1980 ◽  
Author(s):  
J J Neefjes ◽  
G J Hämmerling ◽  
F Momburg

Major histocompatibility complex (MHC) class I molecules are heterotrimers consisting of a polymorphic H chain, beta 2-microglobulin (beta 2m) and peptide. Peptides are thought to associate early during biosynthesis but the order of assembly of class I molecules from their component subunits in intact cells is not settled. We have studied the assembly of MHC class I molecules in intact cells with or without peptide transporters. MHC class I H chain/beta 2m heterodimers can be efficiently recovered only 4 min after translation and are preceded by a folding intermediate. Approximately 2 min after their formation, the class I heterodimers are loaded with peptides resulting in stable class I heterotrimers. In these in vivo studies, no evidence was obtained that peptide binding to the H chain preceded the association with beta 2m. In contrast, nonassembled class I H chains could be recovered immediately after translation, but this pool did not participate in the formation of class I molecules.


1993 ◽  
Vol 177 (1) ◽  
pp. 201-205 ◽  
Author(s):  
L Franksson ◽  
E George ◽  
S Powis ◽  
G Butcher ◽  
J Howard ◽  
...  

Presentation of antigenic peptides by major histocompatibility complex (MHC) class I molecules requires MHC-encoded molecules of the adenosine triphosphate binding cassette (ABC) family. Defects in these proteins represent a potential risk, since they are essential links in the machinery of T cell-mediated surveillance which continuously scrutinizes peptide samples of cellular proteins. Nevertheless, transfection of the mouse lymphoma mutant RMA-S with the rat ABC gene mtp2a (homologue to mouse HAM2 and human RING11), commonly termed TAP-2 genes, led to a marked increase in tumor outgrowth potential in vivo. This occurred despite restored antigen presentation and sensitivity to cytotoxic T lymphocytes, and was found to be due to escape from natural killer (NK) cell-mediated rejection. It has previously been proposed that adequate expression of self-MHC class I is one important mechanism to avoid elimination by NK cells. Our data argue that a defect in the machinery responsible for processing and loading of peptides into MHC class I molecules is sufficient to render cells sensitive to elimination by NK cells. The latter thus appear to function as a surveillance of the peptide surveillance machinery.


1992 ◽  
Vol 176 (1) ◽  
pp. 89-97 ◽  
Author(s):  
N Killeen ◽  
A Moriarty ◽  
H S Teh ◽  
D R Littman

The interaction of the T cell surface glycoprotein CD8 with major histocompatibility complex (MHC) class I molecules on target cells is required for effective T cell activation. Mutations in the alpha 3 domain of the MHC class I molecule can disrupt binding to CD8, yet leave antigen presentation unaffected. Here we show that such a mutation can interfere with positive and negative selection of T cells bearing T cell receptors (TCRs) that interact specifically with the mutant class I molecule. Autoreactive T cells in male mice expressing a transgenic TCR specific for the male antigen H-Y and H-2Db were not deleted in the context of a transgenic Db molecule bearing a mutation at residue 227. Similarly, CD8+ cells were not positively selected in female mice expressing both the TCR and mutant class I transgenes. Endogenous MHC class I molecules were competent to bind CD8, but were unable to rescue the defect, indicating a requirement for coordinate recognition of antigen/MHC by a complex of the TCR and CD8 coreceptor for both positive and negative selection of thymocytes.


1997 ◽  
Vol 8 (1) ◽  
pp. 47-57 ◽  
Author(s):  
E Stang ◽  
J Kartenbeck ◽  
R G Parton

Simian virus 40 (SV40) has been shown to enter mammalian cells via uncoated plasma membrane invaginations. Viral particles subsequently appear within the endoplasmic reticulum. In the present study, we have examined the surface binding and internalization of SV40 by immunoelectron microscopy. We show that SV40 associates with surface pits which have the characteristics of caveolae and are labeled with antibodies to the caveolar marker protein, caveolin-1. SV40 is believed to use major histocompatibility complex (MHC) class I molecules as cell surface receptors. Using a number of MHC class I-specific monoclonal antibodies, we found that both viral infection and association of virus with caveolae were strongly reduced by preincubation with anti-MHC class I antibodies. Because binding of SV40 to MHC class I molecules may induce clustering, we investigated whether antibody cross-linked class I molecules also redistributed to caveolae. Clusters of MHC class I molecules were indeed shown to be specifically associated with caveolin-labeled surface pits. Taken together, the results suggest that SV40 may make use of MHC class I molecule clustering and the caveolae pathway to enter mammalian cells.


1993 ◽  
Vol 13 (3) ◽  
pp. 1554-1564
Author(s):  
A G Frauman ◽  
P Chu ◽  
L C Harrison

The overexpression of major histocompatibility complex (MHC) class I molecules in endocrine epithelial cells is an early feature of autoimmune thyroid disease and insulin-dependent diabetes mellitus, which may reflect a cellular response, e.g., to viruses or toxins. Evidence from a transgenic model in pancreatic beta cells suggests that MHC class I overexpression could play an independent role in endocrine cell destruction. We demonstrate in this study that the transgenic overexpression of an allogeneic MHC class I protein (H-2Kb) linked to the rat thyroglobulin promoter, in H-2Kk mice homozygous for the transgene, leads to thyrocyte atrophy, hypothyroidism, growth retardation, and death. Thyrocyte atrophy occurred in the absence of lymphocytic infiltration. Tolerance to allogeneic class I was revealed by the reduced ability of primed lymphocytes from transgenic mice to lyse H-2Kb target cells in vitro. This nonimmune form of thyrocyte destruction and hypothyroidism recapitulates the beta-cell destruction and diabetes that results from transgenic overexpression of MHC class I molecules in pancreatic beta cells. Thus, we conclude that overexpression of MHC class I molecules may be a general mechanism that directly impairs endocrine epithelial cell viability.


2011 ◽  
Vol 63 (12) ◽  
pp. 821-834 ◽  
Author(s):  
Lasse Eggers Pedersen ◽  
Mikkel Harndahl ◽  
Michael Rasmussen ◽  
Kasper Lamberth ◽  
William T. Golde ◽  
...  

2002 ◽  
Vol 196 (12) ◽  
pp. 1627-1638 ◽  
Author(s):  
Laura Bonifaz ◽  
David Bonnyay ◽  
Karsten Mahnke ◽  
Miguel Rivera ◽  
Michel C. Nussenzweig ◽  
...  

To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.


2002 ◽  
Vol 76 (13) ◽  
pp. 6425-6434 ◽  
Author(s):  
Parul G. Patel ◽  
Monica T. Yu Kimata ◽  
Julia E. Biggins ◽  
Joelle M. Wilson ◽  
Jason T. Kimata

ABSTRACT The replicative, cytopathic, and antigenic properties of simian immunodeficiency virus (SIV) variants influence its replication efficiency in vivo. To further define the viral properties and determinants that may be important for high-level replication in vivo and progression to AIDS, we compared a minimally pathogenic SIVmne molecular clone with two highly pathogenic variants cloned from late stages of infection. Both variants had evolved greater infectivity than the parental clone due to mutations in nef. Interestingly, a pol determinant in one of the highly pathogenic variants also contributed to its increased infectivity. Furthermore, because replication in vivo may also be influenced by the ability of a virus to evade the cellular immune response of the host, we examined whether the variants were more capable of downregulating surface expression of class I major histocompatibility complex (MHC). Decreased MHC class I expression was not observed in cells infected with any of the viruses. Furthermore, the Nef proteins of the highly pathogenic variants only slightly reduced surface MHC class I expression in transfected cells, although they efficiently downregulated CD4. Together, these data demonstrate that mutations which can enhance viral infectivity, as well as CD4 downregulation, may be important for efficient replication of SIV in the host. However, Nef-mediated reduction of MHC class I expression does not appear to be critical for the increased in vivo replicative ability of highly pathogenic late variants.


Sign in / Sign up

Export Citation Format

Share Document