scholarly journals Friend of GATA-1 Represses GATA-3–dependent Activity in CD4+ T Cells

2001 ◽  
Vol 194 (10) ◽  
pp. 1461-1471 ◽  
Author(s):  
Meixia Zhou ◽  
Wenjun Ouyang ◽  
Qian Gong ◽  
Samuel G. Katz ◽  
J. Michael White ◽  
...  

The development of naive CD4+ T cells into a T helper (Th) 2 subset capable of producing interleukin (IL)-4, IL-5, and IL-13 involves a signal transducer and activator of transcription (Stat)6-dependent induction of GATA-3 expression, followed by Stat6-independent GATA-3 autoactivation. The friend of GATA (FOG)-1 protein regulates GATA transcription factor activity in several stages of hematopoietic development including erythrocyte and megakaryocyte differentiation, but whether FOG-1 regulates GATA-3 in T cells is uncertain. We show that FOG-1 can repress GATA-3–dependent activation of the IL-5 promoter in T cells. Also, FOG-1 overexpression during primary activation of naive T cells inhibited Th2 development in CD4+ T cells. FOG-1 fully repressed GATA-3–dependent Th2 development and GATA-3 autoactivation, but not Stat6-dependent induction of GATA-3. FOG-1 overexpression repressed development of Th2 cells from naive T cells, but did not reverse the phenotype of fully committed Th2 cells. Thus, FOG-1 may be one factor capable of regulating the Th2 development.

1992 ◽  
Vol 176 (5) ◽  
pp. 1431-1437 ◽  
Author(s):  
M Croft ◽  
D D Duncan ◽  
S L Swain

Because of the low frequency of T cells for any particular soluble protein antigen in unprimed animals, the requirements for naive T cell responses in specific antigens have not been clearly delineated and they have been difficult to study in vitro. We have taken advantage of mice transgenic for the V beta 3/V alpha 11 T cell receptor (TCR), which can recognize a peptide of cytochrome c presented by IEk. 85-90% of CD4+ T cells in these mice express the transgenic TCR, and we show that almost all such V beta 3/V alpha 11 receptor-positive cells have a phenotype characteristic of naive T cells, including expression of high levels of CD45RB, high levels of L-selectin (Mel-14), low levels of CD44 (Pgp-1), and secretion of interleukin 2 (IL-2) as the major cytokine. Naive T cells, separated on the basis of CD45RB high expression, gave vigorous responses (proliferation and IL-2 secretion) to peptide antigen presented in vitro by a mixed antigen-presenting cell population. At least 50% of the T cell population appeared to respond, as assessed by blast transformation, entry into G1, and expression of increased levels of CD44 by 24 h. Significant contributions to the response by contaminating memory CD4+ cells were ruled out by demonstrating that the majority of the CD45RB low, L-selectin low, CD44 high cells did not express the V beta 3/V alpha 11 TCR and responded poorly to antigen. We find that proliferation and IL-2 secretion of the naive CD4 cells is minimal when resting B cells present peptide antigen, and that both splenic and bone marrow-derived macrophages are weak stimulators. Naive T cells did respond well to high numbers of activated B cells. However, dendritic cells were the most potent stimulators of proliferation and IL-2 secretion at low cell numbers, and were far superior inducers of IL-2 at higher numbers. These studies establish that naive CD4 T cells can respond vigorously to soluble antigen and indicate that maximal stimulation can be achieved by presentation of antigen on dendritic cells. This model should prove very useful in further investigations of activation requirements and functional characteristics of naive helper T cells.


1996 ◽  
Vol 184 (2) ◽  
pp. 473-483 ◽  
Author(s):  
T Sornasse ◽  
P V Larenas ◽  
K A Davis ◽  
J E de Vries ◽  
H Yssel

The development of CD4+ T helper (Th) type 1 and 2 cells is essential for the eradication of pathogens, but can also be responsible for various pathological disorders. Therefore, modulation of Th cell differentiation may have clinical utility in the treatment of human disease. Here, we show that interleukin (IL) 12 and IL-4 directly induce human neonatal CD4- T cells, activated via CD3 and CD28, to differentiate into Th1 and Th2 subsets. In contrast, IL-13, which shares many biological activities with IL-4, failed to induce T cell differentiation, consistent with the observation that human T cells do not express IL-13 receptors. Both the IL-12-induced Th1 subset and the IL-4-induced Th2 subset produce large quantities of IL-10, confirming that human IL-10 is not a typical human Th2 cytokine. Interestingly, IL-4-driven Th2 cell differentiation was completely prevented by an IL-4 mutant protein (IL-4.Y124D), indicating that this molecule acts as a strong IL-4 receptor antagonist. Analysis of single T cells producing interferon gamma or IL-4 revealed that induction of Th1 cell differentiation occurred rapidly and required only 4 d of priming of the neonatal CD4+ T cells in the presence of IL-12. The IL-12-induced Th1 cell phenotype was stable and was not significantly affected when repeatedly stimulated in the presence of recombinant IL-4. In contrast, the differentiation of Th2 cells occurred slowly and required not only 6 d of priming, but also additional restimulation of the primed CD4+ T cells in the presence of IL-4. Moreover, IL-4-induced Th2 cell phenotypes were not stable and could rapidly be reverted into a population predominantly containing Th0 and Th1 cells, after a single restimulation in the presence of IL-12. The observed differences in stability of IL-12- and IL-4-induced human Th1 and Th2 subsets, respectively, may have implications for cytokine-based therapies of chronic disease.


2015 ◽  
Vol 213 (1) ◽  
pp. 123-138 ◽  
Author(s):  
Arata Takeuchi ◽  
Mohamed El Sherif Gadelhaq Badr ◽  
Kosuke Miyauchi ◽  
Chitose Ishihara ◽  
Reiko Onishi ◽  
...  

Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2233-2233
Author(s):  
Monera Al Rukhayes ◽  
Victoria T Potter ◽  
Pilar Perez-Abellan ◽  
Jesus Feliu ◽  
Lajos Floro ◽  
...  

Abstract Lymphocyte-depletion effectively reduces risk of graft versus host disease (GvHD) after allogeneic haematopoietic stem cell transplantation (allo-HSCT), but risk of infections and malignant disease relapse remains high. We have previously reported that pre-emptive donor lymphocyte infusions (pDLI) given to patients after allo-HSCT for myeloid malignancies to reverse falling donor T-cell chimerism improve overall and relapse-free survival. GvHD rates after pDLI were not high and grade rarely severe. To investigate the basis for better outcome after pDLI, we have assessed recovery of lymphocyte subsets, T-cell receptor (TCR) diversity and T-cell functional competence after allo-HSCT with fludarabine and busulphan in cohorts of 59 patients (median age 59) given alemtuzumab for lymphocyte-depletion and 34 patients (median age 58) given anti-thymocyte globulin (ATG). Lymphocytes were significantly less depleted with ATG compared to alemtuzumab (Day 30: Median 3.9 x 108/liter versus 2.3x108/liter, P=0.03) but numbers for both ATG and alemtuzumab remained significantly below the normal range (median 2.34x109/liter for 11 aged-matched healthy volunteers) for at least one year (Day 360 P<0.005: Median 8.35 x 108/liter after ATG; median 1.04 x 109/liter after alemtuzumab). Lymphocyte subset composition was similar after ATG or alemtuzumab, and abnormal. Notable, the T-cell population comprised only memory and effector T cells early after HSCT. These cells expressed significantly higher levels of Ki67 than T cells from healthy volunteers (Day 30 P<0.005: Median CD4 T cells 41.3% Ki67+ after ATG, 66% after alemtuzumab compared to 2.51% for healthy volunteers; median CD8 T cells 18.5% Ki67+ after ATG, 50.8% after alemtuzumab compared to 2.58% for healthy volunteers). This marker is indicative of homeostatic proliferation likely driven by increased levels of IL7 and IL15 detected in the serum of patients early after HSCT compared to healthy volunteers (Day 30 P=0.066 and P<0.005 respectively). Higher frequency of T cells expressing the proliferation marker in patients treated with alemtuzumab was associated with high frequencies of T cells expressing the PD1 marker, indicative of exhaustion (Day 30 P<0.005: Median CD4 T cells 84.0% PD1+ after alemtuzumab compared to 6.35% for healthy volunteers; median CD8 T cells 49.1% PD1+ after alemtuzumab compared to 12.3% for healthy volunteers). Expression of PD1 by T cells was near normal in patients treated with ATG. Naïve T cells were typically absent for at least six months after HSCT following lymphocyte depletion with ATG or alemtuzumab, and any subsequent recovery was poor. In contrast, the naïve T-cell population increased rapidly in patients after pDLI (n=18). Six of these patients received pDLI early after HSCT (at 3-5 months) and naïve T-cell recovery was significantly enhanced at six months compared to patients that did not receive pDLI (Day 180 P<0.005: Median 19.25% naïve CD4 T cells compared to 1.36%; median 23.5% naïve CD8 T cells compared to 3.48%). Naïve T cells are the main source of repertoire diversity and responsible for responses to antigens not previously encountered. Analysis of the TCR β chain repertoire of five patients by deep sequencing revealed that pDLI boosts repertoire diversity. For example, unique TCR β chain sequences increased 31-fold in 150 days after pDLI compared to a 2-fold increase during a similar period for another patient that did not receive DLI. Furthermore, instances of emergence of public clonotypes specific for CMV or EBV that were not detected before DLI were seen in virus-positive patients whose donors were virus-negative. Emergence and rapid expansion of donor-derived clonotypes to frequencies up to 6.75% suggests that naïve T cells present in the DLI had been primed upon encounter with virus in the patient. In vitro stimulation with overlapping 15-mer peptide libraries for CMV antigens and EBV antigens followed by assessment of activation marker expression and interferon-γ, MIP-1β, and TNF-α production showed that virus-specific T-cell responses increased in magnitude and poly-functionality after DLI. These findings show that DLI replenishes naïve T cells and restores ability to respond to viral antigens previously unseen. By inference, this may extend to leukaemia antigens and underlie the reduced rate of malignant disease relapse seen in patients given pDLI. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 185 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Mercedes Rincón ◽  
Juan Anguita ◽  
Tetsuo Nakamura ◽  
Erol Fikrig ◽  
Richard A. Flavell

Interleukin (IL)-4 is the most potent factor that causes naive CD4+ T cells to differentiate to the T helper cell (Th) 2 phenotype, while IL-12 and interferon γ trigger the differentiation of Th1 cells. However, the source of the initial polarizing IL-4 remains unclear. Here, we show that IL-6, probably secreted by antigen-presenting cells, is able to polarize naive CD4+ T cells to effector Th2 cells by inducing the initial production of IL-4 in CD4+ T cells. These results show that the nature of the cytokine (IL-12 or IL-6), which is produced by antigen-presenting cells in response to a particular pathogen, is a key factor in determining the nature of the immune response.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1167-1174 ◽  
Author(s):  
Francesco Annunziato ◽  
Grazia Galli ◽  
Filomena Nappi ◽  
Lorenzo Cosmi ◽  
Roberto Manetti ◽  
...  

Human T helper (Th) cells (Th1- or Th2-oriented memory T cells as well as Th1- or Th2-polarized naive T cells) were infected in vitro with an R5-tropic HIV-1 strain (BaL) and assessed for their profile of cytokine production, CCR5 receptor expression, and HIV-1 p24 antigen (p24 Ag) production. Higher p24 Ag production was found in CCR5-negative Th2-like memory T cells than in CCR5-positive Th1-like memory T cells. By contrast, p24 Ag production was higher in Th1-polarized activated naive T cells in the first 4 days after infection. However, p24 Ag production in Th1-polarized T cells became comparable or even lower than the production in Th2-polarized populations later in infection or when the cells were infected with HIV-1BaL after secondary stimulation. The higher levels of p24 Ag production by Th1-polarized naive T cells soon after infection reflected a higher virus entry, as assessed by the single round infection assay using the HIV–chloramphenicol acetyl transferase (HIV-CAT) R5-tropic virus that contains the envelope protein of HIV-1 YU2 strain. The limitation of viral spread in the Th1-polarized populations, despite the initial higher level of T-cell entry of R5-tropic strains, was due to the ability of Th1 cells to produce greater amounts of β-chemokines than Th2 cells. In fact, an inverse correlation was observed between Th1-polarized naive T cells and Th1-like memory-activated T cells in regards to p24 Ag production and the release of the following CCR5-binding chemokines: regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein–1 (MIP-1), and MIP-1β. Moreover, infection with the HIV-1BaL strain of Th1-polarized T cells in the presence of a mixture of anti-RANTES, anti–MIP-1, and anti–MIP-1β neutralizing antibodies resulted in a significant increase of HIV-1 expression. These findings suggest that Th1-type responses may favor CD4+ T-cell infection by R5-tropic HIV-1 strains, but HIV-1 spread in Th1 cells is limited by their ability to produce CCR5-binding chemokines.


1996 ◽  
Vol 183 (6) ◽  
pp. 2669-2674 ◽  
Author(s):  
F Powrie ◽  
J Carlino ◽  
M W Leach ◽  
S Mauze ◽  
R L Coffman

A T helper type 1 (Th1)-mediated colitis with similarities to inflammatory bowel disease in humans developed in severe combined immunodeficiency mice reconstituted with CD45RB(high) CD4+ splenic T cells and could be prevented by cotransfer of CD45RB(low) CD4+ T cells. Inhibition of this Th1 response by the CD45RB(low) T cell population could be reversed in vivo by an anti-transforming growth factor (TGF) beta antibody. Interleukin (IL) 4 was not required for either the differentiation of function of protective cells as CD45RB(low) CD4+ cells from IL-4-deficient mice were fully effective. These results identify a subpopulation of peripheral CD4+ cells and TGF-beta as critical components of the natural immune regulatory mechanism, which prevents the development of pathogenic Th1 responses in the gut, and suggests that this immunoregulatory population is distinct from Th2 cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3119-3119
Author(s):  
Shannon P. Hilchey ◽  
Alexander F. Rosenberg ◽  
Ollivier Hyrien ◽  
Shelley Secor-Socha ◽  
Matthew R. Cochran ◽  
...  

Abstract Abstract 3119 Tumor infiltrating T-cells tend to be hypo-functional and this loss of function may be due to intrinsic T-cell defects, impaired antigen (Ag) presentation, and/or suppression induced by extrinsic components of the microenvironment, such as regulatory T-cells (Tregs). Each of these potential mechanisms has distinct implications on the potential efficacy of immunotherapy. To determine the functional potential of follicular lymphoma (FL) derived T-cells, we analyzed, by flow cytometry, T helper (Th) subsets and Staphylococcus enterotoxin B (SEB)-induced cytokine profiles of single cell suspensions from FL involved nodes (FL; n=8), reactive lymph nodes (RLN; n=7) and normal lymph nodes (NLN; n=6; obtained during vascular surgery). SEB was used as it directly triggers the T-cell receptor, abrogating the need for Ag presentation, and overcomes Treg mediated suppression. Herein we show that, relative to NLN, FL has decreased proportions of CD4+ T-cells having either a naïve (CD45RA+) or central memory (CD45RA−CCR7+) phenotype but increased proportions of effector memory T-cells (CD45RA−CCR7−). In addition, a higher percentage of pre-stimulation FL CD4+ T-cells show an activated (CD69+) phenotype as compared to that of RLN or NLN. Upon SEB stimulation, the FL CD4+ T-cells, like those from RLN and NLN, show an additional increase in the proportion of CD69+ cells, demonstrating that the FL derived CD4+ T-cells can be activated even further. We also show that upon stimulation with SEB; (a) the proportion of Th1 cells (IL-2+IFN-g+IL-4−) in FL is similar to that seen in RLN or NLN; (b) in contrast, we observe an increased frequency of primed uncommitted precursor Thpp cells (IL-2+IFN-g−IL-4−) in FL compared to that seen in either RLN or NLN; (c) an increased proportion of Th2 cells in FL compared with NLN and; (d) an increase in the proportion of Th17 cells in FL compared to that in RLN. Lastly, the proportions of FL Th cells producing 3 or 4 cytokines simultaneously, or poly-functional CD4+ T-cells, (PFT; PFT-3 producing IL-2, IFN-g and TNF-a or PFT-4 producing IL-2, IFN-g, TNF-a and MIP-1b), after SEB stimulation is similar to that seen in RLN or NLN. These data suggest that although there is skewed Th cell differentiation in FL, as compared to that of RLN or NLN, the intrinsic ability of the FL Th cells to elicit a clinically relevant effector response (both a Th1 and Th2 response) is fully preserved. In addition, the retention of effector function of FL Th cells is further supported by the fact that the proportions of these Th cells that have poly-functional cytokine profiles after SEB stimulation is similar in FL as compared to RLN or NLN. Indeed, poly-functionality of Th cells has been shown to correlate with the elicitation of protective immunity after vaccination for infectious diseases. Finally, the proportion of uncommitted Thpp cells after SEB stimulation is highest in FL. Thpp cells are non-polarized and can still differentiate into either Th1 or Th2 cells. They can also produce several chemokines and thus may play a role in shaping the FL microenvironment by recruiting other immune-effector cells as well as developing into Th1 and Th2 cells. Taken together, our data shows that FL Th cells are fully functional within the parameters of our assays, suggesting that these cells are intrinsically capable of mediating effective anti-tumor immune responses after immunotherapy. Therefore the hypo-functionality of FL T-cells is likely due to extrinsic factors which suppress T-cell function in vivo. Thus the challenge is to develop immunotherapeutic strategies that overcome these tumor associated extrinsic mechanisms, resulting in effective anti-tumor immunity. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Yasuhito Tokumoto ◽  
Yasuto Araki ◽  
Yusuke Narizuka ◽  
Yosuke Mizuno ◽  
Susumu Ohshima ◽  
...  

Abstract Memory T cells are crucial players in vertebrate adaptive immunity but their development is incompletely understood. Here we describe a method to produce human memory-like T cells from naïve human T cells in culture. Using commercially available human T cell differentiation kits, both purified naïve CD8 + T cells and purified naïve CD4 + T cells were activated via T cell receptor signaling and appropriate cytokines for several days in culture. All the T cell activators were then removed from the medium and the cultures were continued in hypoxic condition (1% O2 atmosphere) for several more days; during this period, most of the cells died, but some survived in a quiescent state for a month. The survivors had small round cell bodies, expressed differentiation markers characteristic of memory T cells and restarted proliferation when the T cell activators were added back. We could also induce memory-like T cells from naïve human T cells without hypoxia, if we froze the activated T cells or prepared the naïve T cells from chilled filter buffy coats.


Sign in / Sign up

Export Citation Format

Share Document