scholarly journals CD4+ T Cell Polarization in Mice Is Modulated by Strain-specific Major Histocompatibility Complex–independent Differences within Dendritic Cells

2003 ◽  
Vol 198 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Christophe Filippi ◽  
Stéphanie Hugues ◽  
Julie Cazareth ◽  
Valérie Julia ◽  
Nicolas Glaichenhaus ◽  
...  

Resistance and susceptibility to Leishmania major in mice are determined by multiple genes and correlate with the preferential development of Th1 and Th2 responses, respectively. Here, we found that CD11b+ dendritic cells (DCs) prime parasite-specific CD4+ T cells in both susceptible BALB/c (H2-d) and resistant B10.D2 (H2-d) mice. However, BALB/c and B10.D2 DCs from L. major–infected mice differ in their ability to polarize naive T cells into Th1 or Th2 effector cells. This difference is cell-intrinsic, is not restricted to H2-d mice, and is observed with both parasite-specific and allospecific CD4+ T cells. Thus, strain-specific differences within CD11b+ DCs influence the ability of inbred mice to mount polarized CD4+ T cell responses.

2004 ◽  
Vol 199 (5) ◽  
pp. 725-730 ◽  
Author(s):  
Maria P. Lemos ◽  
Fatima Esquivel ◽  
Phillip Scott ◽  
Terri M. Laufer

Control of the intracellular protozoan, Leishmania major, requires major histocompatibility complex class II (MHC II)–dependent antigen presentation and CD4+ T cell T helper cell 1 (Th1) differentiation. MHC II–positive macrophages are a primary target of infection and a crucial effector cell controlling parasite growth, yet their function as antigen-presenting cells remains controversial. Similarly, infected Langerhans cells (LCs) can prime interferon (IFN)γ–producing Th1 CD4+ T cells, but whether they are required for Th1 responses is unknown. We explored the antigen-presenting cell requirement during primary L. major infection using a mouse model in which MHC II, I-Aβb, expression is restricted to CD11b+ and CD8α+ dendritic cells (DCs). Importantly, B cells, macrophages, and LCs are all MHC II–negative in these mice. We demonstrate that antigen presentation by these DC subsets is sufficient to control a subcutaneous L. major infection. CD4+ T cells undergo complete Th1 differentiation with parasite-specific secretion of IFNγ. Macrophages produce inducible nitric oxide synthase, accumulate at infected sites, and control parasite numbers in the absence of MHC II expression. Therefore, CD11b+ and CD8α+ DCs are not only key initiators of the primary response but also provide all the necessary cognate interactions for CD4+ T cell Th1 effectors to control this protozoan infection.


2019 ◽  
Vol 11 (2) ◽  
pp. 108-123
Author(s):  
Dan Tong ◽  
Li Zhang ◽  
Fei Ning ◽  
Ying Xu ◽  
Xiaoyu Hu ◽  
...  

Abstract Common γ chain cytokines are important for immune memory formation. Among them, the role of IL-2 remains to be fully explored. It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation. Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges. However, as IL-2 peak production is over at this point, the source and the exact mechanism that promotes its production remain elusive. We report here that resting, previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro. This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells. This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells. The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on. Although mostly relying on in vitro evidence, our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.


2003 ◽  
Vol 71 (3) ◽  
pp. 1083-1090 ◽  
Author(s):  
Hélène Saklani-Jusforgues ◽  
Elisabeth Fontan ◽  
Neirouz Soussi ◽  
Geneviève Milon ◽  
Pierre L. Goossens

ABSTRACT Listeria monocytogenes is considered as a potential live bacterial vector, particularly for the induction of CD8 T cells. The CD4 T-cell immune response triggered after enteral immunization of mice has not yet been thoroughly characterized. The dynamics of gamma interferon (IFN-γ)- and interleukin-4 (IL-4)-secreting CD4 T cells were analyzed after priming through intragastric delivery of an attenuated ΔactA recombinant L. monocytogenes strain expressing the Leishmania major LACK protein; a peptide of this protein, LACK158-173 peptide (pLACK), is a well-characterized CD4 T-cell target in BALB/c mice. Five compartments were monitored: Peyer's patches, mesenteric lymph nodes (MLN), spleen, liver, and blood. A single intragastric inoculation of ΔactA-LACK-LM in BALB/c mice led to colonization of the MLN and spleen at a significant level for at least 3 days. Efficient priming of IFN-γ-secreting pLACK-reactive CD4 T cells was observed in all tested compartments. Interestingly, IL-4-secreting pLACK-reactive CD4 T cells were detectable at day 6 or 7 only in blood and liver. The absence of translocation of viable bacteria through the intestinal epithelium after further ΔactA-LACK-LM inoculations was concomitant with the absence of an increase in the level of IFN-γ secreted by the MLN, blood, and splenic pLACK-reactive Th1 T cells, although the levels remained significantly above the basal level. No change in this population size was detected in the spleen. However, an increase in the number of intragastric inoculations had a clinical beneficial effect in L. major-infected BALB/c mice. L. monocytogenes thus presents the potential of an efficient vector for induction of CD4 T cells when administered by the enteral route.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1413-1413
Author(s):  
Akiko Fukunaga ◽  
Takayuki Ishikawa ◽  
Takero Shindo ◽  
Sumiko Takao ◽  
Toshiyuki Hori ◽  
...  

Abstract One of the major problems following allogeneic stem cell transplantation (allo-SCT) is the inability to reconstitute an adequate immune system for an extended period. T-cell reconstitution is also delayed for years, especially in CD4+ T cells. In addition to impaired thymic function, shortened Naive T cell survival due to altered T cell homeostasis is reported to be responsible for delayed immune reconstitution. To further investigate the mechanisms of delayed immune recovery after allo-SCT, we focused on the frequencies of effector CD4+ T cells, because according to the previous reports, progressive linear differentiation model of CD4+ T cell predicts the accumulation of terminally differentiated effector cells when transition from naïve to memory T cells and memory to effector cells are accelerated. By flowcytometric analyses we confirmed that CD27−CD4+ T cells from allo-SCT recipients uniformly express CD95, with negative expression of CCR7 and CD62L. They also produce g-interferon (IFNg) in response to the immobilized anti-CD3 and soluble anti-CD28 stimulation, which is consistent with previous reports insisting that CD27−CD4+ T cells are functionally differentiated effector T cells. Measuring the ratio of CD27−CD4+ T cells among CD4+ T cells revealed that, although healthy donors and patients received allo-SCT within a year had comparable CD27+CD4+T-cell rate (90% vs. 83%, P=0.4436), significantly decreased rate was observed in patients transplanted more than 1 year before (55% vs. 83%, P=0.0005). The ratio of CD27+CD4+ T cells kept low during the first 5 years after allo-SCT, and then it slowly begun to increase. In addition, in patients who received stem cell grafts more than 1 year before, the ratio of CD27+CD4+ T cells were significantly higher in patients transplanted from HLA-matched siblings than in those received unrelated grafts (69% vs. 42%, P=0.0002). Other factors, such as stem cell source (BM or PBSC), patient age, and the presence of chronic GVHD did not influence the ratio of CD27+CD4+ T cells. To further investigate the characteristics of CD27−CD4+ T cells in post-transplant periods, peripheral CD4+ T cells from patients who had received allo-SCT more than 1 year before as well as healthy volunteers were sorted into CD27− and CD27+ fractions, stained with CFSE, and stimulated with immobilized anti-CD3 and soluble anti-CD28 antibodies. CD27−CD4+ T cells proliferated more vigorously at 3 days after stimulation, though after another 2-day culture, there was no difference in cell divisions between both cell groups. In addition, CD27+ cells from transplanted patients lost their expression more frequently than those from volunteers, while none of the CD27− cells stored its expression. The fact of one-way transition from CD27+ to CD27− also supported that CD27−CD4+ T cells are terminally differentiated T cells. The finding that the frequencies of CD27−CD4+ T cells begin to elevate at 1 year after allo-SCT indicates that T cells infused with allograft do not easily lose the surface expression of CD27, while T cells derived from donor’s stem cells do. Considering the fact that ratio of CD27−CD4+ T cells is much higher in recipients of unrelated grafts, and it gradually begin to decrease at 5 years after allo-SCT, the increased ratio of CD27−CD4+ T cells may reflect altered T cell homeostasis. The serial monitoring of the ratio of CD27−CD4+ T cells after allo-SCT may be useful in evaluating immune reconstitution status.


2003 ◽  
Vol 198 (2) ◽  
pp. 235-247 ◽  
Author(s):  
Sayuri Yamazaki ◽  
Tomonori Iyoda ◽  
Kristin Tarbell ◽  
Kara Olson ◽  
Klara Velinzon ◽  
...  

An important pathway for immune tolerance is provided by thymic-derived CD25+ CD4+ T cells that suppress other CD25− autoimmune disease–inducing T cells. The antigen-presenting cell (APC) requirements for the control of CD25+ CD4+ suppressor T cells remain to be identified, hampering their study in experimental and clinical situations. CD25+ CD4+ T cells are classically anergic, unable to proliferate in response to mitogenic antibodies to the T cell receptor complex. We now find that CD25+ CD4+ T cells can proliferate in the absence of added cytokines in culture and in vivo when stimulated by antigen-loaded dendritic cells (DCs), especially mature DCs. With high doses of DCs in culture, CD25+ CD4+ and CD25− CD4+ populations initially proliferate to a comparable extent. With current methods, one third of the antigen-reactive T cell receptor transgenic T cells enter into cycle for an average of three divisions in 3 d. The expansion of CD25+ CD4+ T cells stops by day 5, in the absence or presence of exogenous interleukin (IL)-2, whereas CD25− CD4+ T cells continue to grow. CD25+ CD4+ T cell growth requires DC–T cell contact and is partially dependent upon the production of small amounts of IL-2 by the T cells and B7 costimulation by the DCs. After antigen-specific expansion, the CD25+ CD4+ T cells retain their known surface features and actively suppress CD25− CD4+ T cell proliferation to splenic APCs. DCs also can expand CD25+ CD4+ T cells in the absence of specific antigen but in the presence of exogenous IL-2. In vivo, both steady state and mature antigen-processing DCs induce proliferation of adoptively transferred CD25+ CD4+ T cells. The capacity to expand CD25+ CD4+ T cells provides DCs with an additional mechanism to regulate autoimmunity and other immune responses.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009522
Author(s):  
Orion Tong ◽  
Gabriel Duette ◽  
Thomas Ray O’Neil ◽  
Caroline M. Royle ◽  
Hafsa Rana ◽  
...  

Although HIV infection inhibits interferon responses in its target cells in vitro, interferon signatures can be detected in vivo soon after sexual transmission, mainly attributed to plasmacytoid dendritic cells (pDCs). In this study, we examined the physiological contributions of pDCs to early HIV acquisition using coculture models of pDCs with myeloid DCs, macrophages and the resting central, transitional and effector memory CD4 T cell subsets. pDCs impacted infection in a cell-specific manner. In myeloid cells, HIV infection was decreased via antiviral effects, cell maturation and downregulation of CCR5 expression. In contrast, in resting memory CD4 T cells, pDCs induced a subset-specific increase in intracellular HIV p24 protein expression without any activation or increase in CCR5 expression, as measured by flow cytometry. This increase was due to reactivation rather than enhanced viral spread, as blocking HIV entry via CCR5 did not alter the increased intracellular p24 expression. Furthermore, the load and proportion of cells expressing HIV DNA were restricted in the presence of pDCs while reverse transcriptase and p24 ELISA assays showed no increase in particle associated reverse transcriptase or extracellular p24 production. In addition, PDCs also markedly induced the expression of CD69 on infected CD4 T cells and other markers of CD4 T cell tissue retention. These phenotypic changes showed marked parallels with resident memory CD4 T cells isolated from anogenital tissue using enzymatic digestion. Production of IFNα by pDCs was the main driving factor for all these results. Thus, pDCs may reduce HIV spread during initial mucosal acquisition by inhibiting replication in myeloid cells while reactivating latent virus in resting memory CD4 T cells and retaining them for immune clearance.


2020 ◽  
Vol 38 (5_suppl) ◽  
pp. 14-14
Author(s):  
Timothy A Yap ◽  
Justin F. Gainor ◽  
Howard A. Burris ◽  
Shivaani Kummar ◽  
Russell Kent Pachynski ◽  
...  

14 Background: ICOS is a costimulatory molecule upregulated on activated T cells. Vopra is an investigational ICOS agonist antibody that results in activation and proliferation of primed CD4 T effector cells. Vopra was assessed in heavily pretreated patients with advanced solid tumors as monotherapy (mono) or in combination with nivolumab (nivo) in the Phase 1/2 ICONIC trial (NCT02904226). Emergence of a distinct ICOS high (hi) population of peripheral CD4 T effector cells, not seen with PD-1 inhibitors alone, was associated with improved ORR, PFS and OS with vopra mono and combo therapy (AACR 2019). Baseline tumor and blood biomarkers were assessed for ability to predict ICOS hi CD4 T cell emergence and clinical outcomes. Methods: Fresh pre-treatment tumor biopsies were assessed by RS, a gene signature describing immune cell infiltration, and other biomarkers, including PD-L1 TPS by IHC. Pts were classified as RS1 and RS2 based on medium and high cutoffs. Associations between potential predictive biomarkers, ICOS hi CD4 T cell emergence and clinical outcomes were evaluated. Results: Baseline RS is significantly higher in patients with emergence of ICOS hi CD4 T cells. High RS was associated with increased emergence of ICOS hi CD4 T cells, accompanied by improved RECIST response, PFS, and OS. In contrast, no association was noted with PD-L1 IHC. Clinical trial information: NCT02904226. Conclusions: In this retrospective subset analysis, the RS score, but not PD-L1, in baseline tumor biopsies was predictive of emergence of an ICOS hi CD4 T cell population and improved RECIST response, PFS, and OS in patients treated with vopra alone and in combination with nivo. Clinical evaluation of vopra and investigational PD-1 inhibitor JTX-4014 in cancer patients with RS selection is planned. [Table: see text]


2018 ◽  
Author(s):  
Aakanksha Jain ◽  
Ricardo A. Irizarry-Caro ◽  
Amanpreet S. Chawla ◽  
Naomi H. Philip ◽  
Kaitlin R. Carroll ◽  
...  

AbstractWhile IL-1β is critical for anti-microbial host defense, it is also a key mediator of autoimmune inflammation. Inflammasome activation following pathogenic insults is known to result in IL-1β production. However, the molecular events that produce IL-1β during T cell driven autoimmune diseases remain unclear. Here, we have discovered an inflammasome-independent pathway of IL-1β production that is triggered upon cognate interactions between dendritic cells and effector CD4 T cells. Analogous to inflammasome activation, this “T cell-instructed IL-1β also relies on two independent signaling events. TNFα produced by activated CD4 T cells engages TNFR signaling on DCs leading to pro-IL-1β synthesis. Subsequently, FasL, also expressed by effector CD4 T cells, engages Fas on DCs leading to caspase-8 dependent pro-IL-1β cleavage. Remarkably, this two-step mechanism is completely independent of pattern recognition receptor activation. IL-1β produced upon cognate DC-effector CD4 T cell interaction causes wide spread leukocyte infiltration, a hallmark of systemic inflammation as well as autoimmune pathology. This study has uncovered a novel feature of DC-T cell cross-talk that allows for active IL-1β secretion independent of innate sensing pathways and provides a mechanistic explanation for IL-1β production and its downstream consequences in CD4 T cell driven autoimmune pathology.


Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1218-1227 ◽  
Author(s):  
Xiongfei Xu ◽  
Zhenhong Guo ◽  
Xueyu Jiang ◽  
Yushi Yao ◽  
Qiangguo Gao ◽  
...  

Abstract The heterogeneity and mechanisms for the generation of CD4 memory T (CD4 Tm) cells remain elusive. Distinct subsets of dendritic cells (DCs) have been found to regulate a distinct T-helper (Th)–cell subset differentiation by influencing cytokine cues around CD4 T cells; however, whether and how the regulatory DC subset can regulate Tm-cell differentiation remains unknown. Further, there is no ideal in vitro experimental system with which to mimic the 3 phases of the CD4 T-cell immune response (expansion, contraction, memory generation) and/or to culture CD4 Tm cells for more than a month. By analyzing CD4 T cells programmed by long-term coculture with regulatory DCs, we identified a population of long-lived CD4 T cells with a CD44hiCD62L−CCR7− effector memory phenotype and rapid, preferential secretion of the Th2 cytokines interleukin-4 (IL-4), IL-5, IL-10, and IL-13 after antigenic stimulation. These regulatory DC-programmed Tm cells suppress CD4 T-cell activation and proliferation in vitro via IL-10 and inhibit the delayed-type hypersensitivity response once infused in vivo. We also identify their natural counterpart, which is up-regulated by regulatory DC transfusion and negatively regulates the recall response in vivo. Different from interferon-γ–producing conventional Tm cells, these IL-4–producing CD4 Tm cells act as alternative Tm cells with a regulatory function, suggesting a new way of negative immune regulation by memory T cells.


Sign in / Sign up

Export Citation Format

Share Document