scholarly journals Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection

2007 ◽  
Vol 204 (4) ◽  
pp. 941-949 ◽  
Author(s):  
Haina Shin ◽  
Shawn D. Blackburn ◽  
Joseph N. Blattman ◽  
E. John Wherry

Efficient maintenance of memory CD8 T cells is central to long-term protective immunity. IL-7– and IL-15–driven homeostatic proliferation is essential for long-term memory CD8 T cell persistence after acute infections. During chronic infections, however, virus-specific CD8 T cells respond poorly to these cytokines. Yet, virus-specific CD8 T cells often persist for long periods of time during chronic infections. We have addressed this apparent paradox by examining the mechanism for maintaining virus-specific CD8 T cells during chronic infection. We find that homeostatic cytokines (e.g., IL-7/15), inflammatory signals, and priming of recent thymic emigrants are not sufficient to maintain virus-specific CD8 T cells over time during chronic infection. Rather, our results demonstrate that viral peptide is required for virus-specific CD8 T cell persistence during chronic infection. Moreover, this viral antigen-dependent maintenance results in a dramatically different type of T cell division than is normally observed during memory T cell homeostasis. Rather than undergoing slow, steady homeostatic turnover during chronic viral infection, CD8 T cells undergo extensive peptide-dependent division, yet cell numbers remain relatively stable. These results indicate that antigen-specific CD8 T cell responses during persisting infection are maintained by a mechanism distinct from that after acute infection.

2019 ◽  
Vol 116 (28) ◽  
pp. 14113-14118 ◽  
Author(s):  
Rohit R. Jadhav ◽  
Se Jin Im ◽  
Bin Hu ◽  
Masao Hashimoto ◽  
Peng Li ◽  
...  

We have recently defined a novel population of PD-1 (programmed cell death 1)+ TCF1 (T cell factor 1)+ virus-specific CD8 T cells that function as resource cells during chronic LCMV infection and provide the proliferative burst seen after PD-1 blockade. Such CD8 T cells have been found in other chronic infections and also in cancer in mice and humans. These CD8 T cells exhibit stem-like properties undergoing self-renewal and also differentiating into the terminally exhausted CD8 T cells. Here we compared the epigenetic signature of stem-like CD8 T cells with exhausted CD8 T cells. ATAC-seq analysis showed that stem-like CD8 T cells had a unique signature implicating activity of HMG (TCF) and RHD (NF-κB) transcription factor family members in contrast to higher accessibility to ETS and RUNX motifs in exhausted CD8 T cells. In addition, regulatory regions of the transcription factorsTcf7andId3were more accessible in stem-like cells whereasPrdm1andId2were more accessible in exhausted CD8 T cells. We also compared the epigenetic signatures of the 2 CD8 T cell subsets from chronically infected mice with effector and memory CD8 T cells generated after an acute LCMV infection. Both CD8 T cell subsets generated during chronic infection were strikingly different from CD8 T cell subsets from acute infection. Interestingly, the stem-like CD8 T cell subset from chronic infection, despite sharing key functional properties with memory CD8 T cells, had a very distinct epigenetic program. These results show that the chronic stem-like CD8 T cell program represents a specific adaptation of the T cell response to persistent antigenic stimulation.


Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 4671-4678 ◽  
Author(s):  
Ji-Yuan Zhang ◽  
Zheng Zhang ◽  
Xicheng Wang ◽  
Jun-Liang Fu ◽  
Jinxia Yao ◽  
...  

Abstract The immunoreceptor PD-1 is significantly up-regulated on exhausted CD8+ T cells during chronic viral infections such as HIV-1. However, it remains unknown whether PD-1 expression on CD8+ T cells differs between typical progressors (TPs) and long-term nonprogressors (LTNPs). In this report, we examined PD-1 expression on HIV-specific CD8+ T cells from 63 adults with chronic HIV infection. We found that LTNPs exhibited functional HIV-specific memory CD8+ T cells with markedly lower PD-1 expression. TPs, in contrast, showed significantly up-regulated PD-1 expression that was closely correlated with a reduction in CD4 T-cell number and an elevation in plasma viral load. Importantly, PD-1 up-regulation was also associated with reduced perforin and IFN-γ production, as well as decreased HIV-specific effector memory CD8+ T-cell proliferation in TPs but not LTNPs. Blocking PD-1/PD-L1 interactions efficiently restored HIV-specific CD8+ T-cell effector function and proliferation. Taken together, these findings confirm the hypothesis that high PD-1 up-regulation mediates HIV-specific CD8+ T-cell exhaustion. Blocking the PD-1/PD-L1 pathway may represent a new therapeutic option for this disease and provide more insight into immune pathogenesis in LTNPs.


2007 ◽  
Vol 81 (6) ◽  
pp. 2940-2949 ◽  
Author(s):  
Adam J. Gehring ◽  
Dianxing Sun ◽  
Patrick T. F. Kennedy ◽  
Esther Nolte-'t Hoen ◽  
Seng Gee Lim ◽  
...  

ABSTRACT CD8 T cells exert their antiviral function through cytokines and lysis of infected cells. Because hepatocytes are susceptible to noncytolytic mechanisms of viral clearance, CD8 T-cell antiviral efficiency against hepatotropic viruses has been linked to their capacity to produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). On the other hand, intrahepatic cytokine production triggers the recruitment of mononuclear cells, which sustain acute and chronic liver damage. Using virus-specific CD8 T cells and human hepatocytes, we analyzed the modulation of virus-specific CD8 T-cell function after recognition peptide-pulsed or virally infected hepatocytes. We observed that hepatocyte antigen presentation was generally inefficient, and the quantity of viral antigen strongly influenced CD8 T-cell antiviral function. High levels of hepatitis B virus production induced robust IFN-γ and TNF-α production in virus-specific CD8 T cells, while limiting amounts of viral antigen, both in hepatocyte-like cells and naturally infected human hepatocytes, preferentially stimulated CD8 T-cell degranulation. Our data document a mechanism where virus-specific CD8 T-cell function is influenced by the quantity of virus produced within hepatocytes.


2016 ◽  
Vol 34 (4) ◽  
pp. 396-409 ◽  
Author(s):  
Katja Nitschke ◽  
Hendrik Luxenburger ◽  
Muthamia M. Kiraithe ◽  
Robert Thimme ◽  
Christoph Neumann-Haefelin

Approximately 500 million people are chronically infected with the hepatitis B virus (HBV) or hepatitis C virus (HCV) worldwide and are thus at high risk of progressive liver disease, leading to liver fibrosis, cirrhosis and ultimately hepatocellular cancer. Virus-specific CD8+ T-cells play a major role in viral clearance in >90% of adult patients who clear HBV and in approximately 30% of patients who clear HCV in acute infection. However, several mechanisms contribute to the failure of the adaptive CD8+ T-cell response in those patients who progress to chronic infection. These include viral mutations leading to escape from the CD8+ T-cell response as well as exhaustion and dysfunction of virus-specific CD8+ T-cells. Antiviral efficacy of the virus-specific CD8+ T-cell response also strongly depends on its restriction by specific human leukocyte antigens (HLA) class I alleles. Our review will summarize the role of HLA-A, B and C-restricted CD8+ T-cells in HBV and HCV infection. Due to the current lack of a comprehensive database of HBV- and HCV-specific CD8+ T-cell epitopes, we also provide a summary of the repertoire of currently well-described HBV- and HCV-specific CD8+ T-cell epitopes. A better understanding of the factors that contribute to the success or failure of virus-specific CD8+ T-cells may help to develop new therapeutic options for HBV eradication in patients with chronic HBV infection (therapeutic vaccination and/or immunomodulation) as well as a prophylactic vaccine against HCV infection.


2006 ◽  
Vol 203 (10) ◽  
pp. 2281-2292 ◽  
Author(s):  
Constantinos Petrovas ◽  
Joseph P. Casazza ◽  
Jason M. Brenchley ◽  
David A. Price ◽  
Emma Gostick ◽  
...  

Here, we report on the expression of programmed death (PD)-1 on human virus-specific CD8+ T cells and the effect of manipulating signaling through PD-1 on the survival, proliferation, and cytokine function of these cells. PD-1 expression was found to be low on naive CD8+ T cells and increased on memory CD8+ T cells according to antigen specificity. Memory CD8+ T cells specific for poorly controlled chronic persistent virus (HIV) more frequently expressed PD-1 than memory CD8+ T cells specific for well-controlled persistent virus (cytomegalovirus) or acute (vaccinia) viruses. PD-1 expression was independent of maturational markers on memory CD8+ T cells and was not directly associated with an inability to produce cytokines. Importantly, the level of PD-1 surface expression was the primary determinant of apoptosis sensitivity of virus-specific CD8+ T cells. Manipulation of PD-1 led to changes in the ability of the cells to survive and expand, which, over several days, affected the number of cells expressing cytokines. Therefore, PD-1 is a major regulator of apoptosis that can impact the frequency of antiviral T cells in chronic infections such as HIV, and could be manipulated to improve HIV-specific CD8+ T cell numbers, but possibly not all functions in vivo.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2031-2031
Author(s):  
Simone A Minnie ◽  
David Smith ◽  
Kate H Gartlan ◽  
Thomas S Watkins ◽  
Kate A Markey ◽  
...  

Abstract Autologous stem cell transplantation (ASCT) remains an important consolidation treatment for multiple myeloma (MM) patients, even in the era of novel agents. The prolongation of plateau-phase induced by ASCT is generally attributed to intensive cytoreduction. However, ASCT generates inflammation and profound lymphodepletion, which may result in hitherto unexpected immunological effects. To investigate potential immunological contributions to myeloma control after ASCT, we developed preclinical models of transplantation for MM using Vk*MYC myeloma that generates bony lytic lesions, a serum M band and marrow plasmacytosis that are hallmarks of clinical disease. Myeloma-bearing B6 recipients underwent myeloablative conditioning and were transplanted with naïve B6 bone marrow (BM) grafts with or without T cells from donors that were myeloma-naïve (SCT) or had low M bands at the time of harvest to mimic ASCT. Surprisingly, we demonstrate the broad induction of T cell-dependent myeloma control with enhanced median survival in recipients of grafts containing T cells compared to T cell depleted (TCD) BM alone (SCT= 91 days and ASCT > 100 days post-transplant vs TCD BM alone= 44 days; p<0.0001). Myeloma was most efficiently controlled when recipients were transplanted with memory T cells (CD44+) from autologous grafts (median survival: ASCT-CD44+ T cells >90 days post-transplant vs. CD44─ T cells = 50 days; p = 0.0006). Importantly, T cells adoptively transferred from recipients surviving > 120 days (MM-primed) protected secondary recipients compared to T cells from naïve donors (median survival: MM-primed > 120 days post-transplant vs 65 days naïve T cells; p = 0.0003). Furthermore, MM-primed CD8 T cells were restricted in TCR repertoire and provided protection in a myeloma clone-specific fashion, indicative of a tumor-specific T cell response. Despite this immune-mediated control of myeloma after SCT, progression still occurred in the majority of recipients. We phenotyped CD8+ T cells from the BM of MM-relapsed, MM-controlled and MM-free (that had never seen myeloma) mice 8 weeks after SCT. Expression of the inhibitory receptors, programmed cell death protein 1 (PD-1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) on BM CD8+ T-cells strongly correlated with myeloma cell number (r = 0.729, p<0.0001 and r = 0.796, p<0.0001 respectively). Additionally, the co-stimulatory/adhesion receptor CD226 (DNAM-1) was markedly downregulated as myeloma progressed (r = - 0.865, p<0.0001), as was interferon-γ secretion (r = - 0.76, p = 0.0022). t-SNE analysis confirmed an irreversible exhaustion signature at myeloma progression, characterized by the absence of DNAM-1 and co-expression of PD-1, TIM-3, TIGIT together with CD101 and CD38. Immune-checkpoint inhibition (CPI) early post-SCT, using antibodies against PD-1 or TIGIT facilitated long-term myeloma control (median survival in both treatment arms > 120 days post-SCT vs. 60 and 68 days respectively; p <0.05). Furthermore, TIGIT blockade limited CD8+ T cell exhaustion, increased CD107a and IFNγ secretion and expanded a memory CD8+ T cell population in the BM. Genetic deletion of either IFNγ or the IFNγ receptor from the donor graft resulted in dramatic myeloma progression after SCT. Consequently, treatment with a CD137 (4-IBB) agonist early after SCT profoundly augmented CD8+IFNγ+GranzymeB+ T-cell expansion in the BM, such that majority of treated animals eliminated myeloma and survived long-term. These data provide insights into an unappreciated mechanism of action of ASCT whereby myeloma immune-equilibrium is established and suggest that combination with immunotherapeutic strategies is a rational approach to generate long term disease control. Disclosures Smyth: Bristol Myers Squibb: Other: Research agreement; Tizona Therapeutics: Research Funding.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lihua Luo ◽  
Bing Qin ◽  
Mengshi Jiang ◽  
Lin Xie ◽  
Zhenyu Luo ◽  
...  

Abstract Background Photothermal therapy (PTT) is a highly effective treatment for solid tumors and can induce long-term immune memory worked like an in situ vaccine. Nevertheless, PTT inevitably encounters photothermal resistance of tumor cells, which hinders therapeutic effect or even leads to tumor recurrence. Naïve CD8+ T cells are mainly metabolized by oxidative phosphorylation (OXPHOS), followed by aerobic glycolysis after activation. And the differentiate of effector CD8+ T cell (CD8+ Teff) into central memory CD8+ T cell (CD8+ TCM) depends on fatty acid oxidation (FAO) to meet their metabolic requirements, which is regulated by adenosine monophosphate activated protein kinase (AMPK). In addition, the tumor microenvironment (TME) is severely immunosuppressive, conferring additional protection against the host immune response mediated by PTT. Methods Metformin (Met) down-regulates NADH/NADPH, promotes the FAO of CD8+ T cells by activating AMPK, increases the number of CD8+ TCM, which boosts the long-term immune memory of tumor-bearing mice treated with PTT. Here, a kind of PLGA microspheres co-encapsulated hollow gold nanoshells and Met (HAuNS-Met@MS) was constructed to inhibit the tumor progress. 2-Deoxyglucose (2DG), a glycolysis inhibitor for cancer starving therapy, can cause energy loss of tumor cells, reduce the heat stress response of tumor cell, and reverse its photothermal resistance. Moreover, 2DG prevents N-glycosylation of proteins that cause endoplasmic reticulum stress (ERS), further synergistically enhance PTT-induced tumor immunogenic cell death (ICD), and improve the effect of immunotherapy. So 2DG was also introduced and optimized here to solve the metabolic competition among tumor cells and immune cells in the TME. Results We utilized mild PTT effect of HAuNS to propose an in situ vaccine strategy based on the tumor itself. By targeting the metabolism of TME with different administration strategy of 2DG and perdurable action of Met, the thermotolerance of tumor cells was reversed, more CD8+ TCMs were produced and more effective anti-tumor was presented in this study. Conclusion The Step-by-Step starving-photothermal therapy could not only reverse the tumor thermotolerance, but also enhance the ICD and produce more CD8+ TCM during the treatment. Graphical Abstract


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 2103-2108 ◽  
Author(s):  
Mark K. Slifka ◽  
Jason K. Whitmire ◽  
Rafi Ahmed

Abstract Immunizing bone marrow donors prior to bone marrow transplant (BMT) has the potential for adoptively transferring specific immunity against opportunistic pathogens. Studies have shown that long-term antibody production occurs in the bone marrow and that specific humoral immunity may be transferred from donor to recipient following BMT. However, the magnitude and duration of T-cell memory in the bone marrow compartment has not been adequately investigated. In this study, virus-specific CD8+ T-cell responses in the bone marrow were compared with those observed in the spleen of mice acutely infected with lymphocytic choriomeningitis virus (LCMV). During the acute stages of infection, most CD8+ T cells in the spleen and bone marrow showed upregulated surface expression of the activation/memory marker, LFA-1 (LFA-1hi). After clearing LCMV infection, the antiviral immune response subsided to homeostatic levels and the ratio of CD8+/LFA-1hi to CD8+/LFA-1lo T cells in the spleen and bone marrow of LCMV immune mice returned to the value observed in naive mice. Virus-specific ex vivo effector cytotoxic T-lymphocyte (CTL) responses could be identified in both spleen and bone marrow compartments at 8 days postinfection. LCMV-specific CTL precursor (CTLp) frequencies peaked in the bone marrow at 8 days postinfection and averaged one in 200 to one in 650 CD8+ T cells, a frequency similar to that observed in the spleen. After clearing the acute infection, potent LCMV-specific CTL memory responses could be demonstrated in the bone marrow for at least 325 days postinfection, indicating long-term persistence of antiviral T cells at this site. Adoptive transfer of LCMV-immune bone marrow into severe combined immunodeficiency (SCID) mice provided protection against viral challenge, whereas SCID mice that received naive bone marrow became chronically infected upon challenge with LCMV. These results indicate that after acute viral infection, virus-specific memory T cells can be found in the bone marrow compartment and are maintained for an extended period, and when adoptively transferred into an immunodeficient host, they are capable of conferring protection against chronic viral infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rebecca T. Veenhuis ◽  
Caroline C. Garliss ◽  
Justin R. Bailey ◽  
Joel N. Blankson

HIV-specific CD8 T cells and broadly neutralizing antibodies (bNAbs) both contribute to the control of viremia, but in most cases, neither can completely suppress viral replication. To date, therapeutic vaccines have not been successful in eliciting HIV-specific CD8 T cell or bNAb responses that are capable of preventing long-term viral rebound upon ART cessation. These challenges suggest that a combinatorial approach that harnesses both bNAbs and CD8 T cell responses may be necessary for long term control of viral replication. In this study we demonstrate a synergistic interaction between CD8 T cells and bNAbs using an in vitro model. Our data suggest that this combinatorial approach is very effective at suppressing viral replication in vitro and should be considered in future therapeutic studies.


2020 ◽  
Author(s):  
Jaana Westmeier ◽  
Krystallenia Paniskaki ◽  
Zehra Karaköse ◽  
Tanja Werner ◽  
Kathrin Sutter ◽  
...  

AbstractSARS-CoV-2 infection induces a T cell response that most likely contributes to virus control in COVID-19 patients, but may also induce immunopathology. Until now, the cytotoxic T cell response has not been very well characterized in COVID-19 patients.Here, we analyzed the differentiation and cytotoxic profile of T cells in 30 cases of mild COVID-19 during acute infection. SARS-CoV-2 infection induced a cytotoxic response of CD8+ T cells, but not CD4+ T cells, characterized by the simultaneous production of granzyme A and B, as well as perforin within different effector CD8+ T cell subsets. PD-1 expressing CD8+ T cells also produced cytotoxic molecules during acute infection indicating that they were not functionally exhausted. However, in COVID-19 patients over the age of 80 years the cytotoxic T cell potential was diminished, especially in effector memory and terminally differentiated effector CD8+ cells, showing that elderly patients have impaired cellular immunity against SARS-CoV-2.Our data provides valuable information about T cell responses in COVID-19 patients that may also have important implications for vaccine development.ImportanceCytotoxic T cells are responsible for the elimination of infected cells and are key players for the control of viruses. CD8+ T cells with an effector phenotype express cytotoxic molecules and are able to perform target cell killing. COVID-19 patients with a mild disease course were analyzed for the differentiation status and cytotoxic profile of CD8+ T cells. SARS-CoV-2 infection induced a vigorous cytotoxic CD8+ T cell response. However, this cytotoxic profile of T cells was not detected in COVID-19 patients over the age of 80 years. Thus, the absence of a cytotoxic response in elderly patients might be a possible reason for the more frequent severity of COVID-19 in this age group in comparison to younger patients.


Sign in / Sign up

Export Citation Format

Share Document