scholarly journals Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut

2012 ◽  
Vol 209 (9) ◽  
pp. 1529-1535 ◽  
Author(s):  
Susan M. Schlenner ◽  
Benno Weigmann ◽  
Qingguo Ruan ◽  
Youhai Chen ◽  
Harald von Boehmer

Regulatory T cells (T reg cells) are essential for the prevention of autoimmunity throughout life. T reg cell development occurs intrathymically but a subset of T reg cells can also differentiate from naive T cells in the periphery. In vitro, Smad signaling facilitates conversion of naive T cells into T reg cells but results in unstable Foxp3 expression. The TGF-β–Smad response element in the foxp3 locus is located in the CNS1 region in close proximity to binding sites for transcription factors implicated in TCR and retinoic acid signaling. From in vitro experiments it was previously postulated that foxp3 transcription represents a hierarchical process of transcription factor binding in which Smad3 would play a central role in transcription initiation. However, in vitro conditions generate T reg cells that differ from T reg cells encountered in vivo. To address the relevance of Smad3 binding to the CNS1 enhancer in vivo, we generated mice that exclusively lack the Smad binding site (foxp3CNS1mut). We show that binding of Smad3 to the foxp3 enhancer is dispensable for T reg cell development in newborn and adult mice with the exception of the gut.

2019 ◽  
Vol 47 (3) ◽  
pp. 244-253
Author(s):  
Mehmet Sahin ◽  
Emel Sahin

Naturally occurring regulatory T cells (nTregs) are produced under thymic (tTregs) or peripherally induced (pTregs) conditions in vivo. On the other hand, Tregs generated from naive T cells in vitro under some circumstances, such as treatment with transforming growth factor-β (TGFB), are called induced Tregs (iTregs). Tregs are especially characterized by FOXP3 expression, which is mainly controlled by DNA methylation. nTregs play important roles in the suppression of immune response and self-tolerance. The prostaglandin E2 (PGE2) pathway was reported to contribute to regulatory functions of tumor-infiltrating nTregs. In this study, we examined whether PGE2 contributes to the formation of iTregs treated with TGFB1 and 5-aza-2′-deoxycytidine (5-aza-dC), which is a DNA methyltransferase inhibitor. We found that the protein and gene expression levels of FOXP3 and IL-10 were increased in 5-aza-dC and TGFB1-treated T cells in vitro. However, the addition of PGE2 to these cells reversed these increments significantly. In CFSE-based cell suppression assays, we demonstrated that PGE2 decreased the suppressive functions of 5-aza-dC and TGFB1-treated T cells.


1995 ◽  
Vol 42 (5) ◽  
pp. 517-523 ◽  
Author(s):  
R. GRAINGER ◽  
D. N. J. HART ◽  
J. D. WATSON ◽  
M. A. BAIRD

Blood ◽  
2007 ◽  
Vol 110 (5) ◽  
pp. 1519-1529 ◽  
Author(s):  
Peter Reichardt ◽  
Bastian Dornbach ◽  
Song Rong ◽  
Stefan Beissert ◽  
Faikah Gueler ◽  
...  

Abstract Naive B cells are ineffective antigen-presenting cells and are considered unable to activate naive T cells. However, antigen-specific contact of these cells leads to stable cell pairs that remain associated over hours in vivo. The physiologic role of such pairs has not been evaluated. We show here that antigen-specific conjugates between naive B cells and naive T cells display a mature immunologic synapse in the contact zone that is absent in T-cell–dendritic-cell (DC) pairs. B cells induce substantial proliferation but, contrary to DCs, no loss of L-selectin in T cells. Surprisingly, while DC-triggered T cells develop into normal effector cells, B-cell stimulation over 72 hours induces regulatory T cells inhibiting priming of fresh T cells in a contact-dependent manner in vitro. In vivo, the regulatory T cells home to lymph nodes where they potently suppress immune responses such as in cutaneous hypersensitivity and ectopic allogeneic heart transplant rejection. Our finding might help to explain old observations on tolerance induction by B cells, identify the mature immunologic synapse as a central functional module of this process, and suggest the use of naive B-cell–primed regulatory T cells, “bTregs,” as a useful approach for therapeutic intervention in adverse adaptive immune responses.


Blood ◽  
2011 ◽  
Vol 117 (8) ◽  
pp. 2494-2505 ◽  
Author(s):  
Yiming Huang ◽  
Larry D. Bozulic ◽  
Thomas Miller ◽  
Hong Xu ◽  
Lala-Rukh Hussain ◽  
...  

Abstract CD8-positive/T-cell receptor–negative (CD8+/TCR−) graft facilitating cells (FCs) are a novel cell population in bone marrow that potently enhance engraftment of hemopoietic stem cells (HSCs). Previously, we showed that the CD11c+/B220+/CD11b− plasmacytoid-precursor dendritic cell (p-preDC) FC subpopulation plays a critical but nonredundant role in facilitation. In the present study, we investigated the mechanism of FC function. We report that FCs induce antigen-specific CD4+/CD25+/FoxP3+ regulatory T cells (Tregs) in vivo. The majority of chimeric Tregs were recipient derived. Chimeric Tregs harvested at ≥ 4 weeks after transplantation significantly enhanced engraftment of donor- and recipient-derived HSCs, but not third-party HSCs, in conditioned secondary recipients, demonstrating antigen specificity. Although Tregs were present 2 and 3 weeks after transplantation, they did not enhance engraftment. In contrast, week 5 and greater Tregs potently enhanced engraftment. The function of chimeric Tregs was directly correlated with the development of FoxP3 expression. Chimeric Tregs also induced significantly stronger suppression of T-cell proliferation to donor antigen in vitro. Removal of p-preDC FCs resulted in impaired engraftment of allogeneic HSCs and failure to produce chimeric Tregs, suggesting that the CD8α+ p-preDC subpopulation is critical in the mechanism of facilitation. These data suggest that FCs induce the production of antigen-specific Tregs in vivo, which potently enhance engraftment of allogeneic HSCs. FCs hold clinical potential because of their ability to remain tolerogenic in vivo.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5605-5605
Author(s):  
Tzeon-Jye Chiou ◽  
Yi-Chun Ke ◽  
Chun-Tse Kuo ◽  
Hsiu-Yuan Huang ◽  
Shao-Chun Lu ◽  
...  

Background Foxp3+ regulatory T cells (Tregs) comprise of natural (n) and induced (i) Treg subsets play an important role in immune system. Currently, isolation of nTregs and in vitro-expanded nTregs was shown to be an effective therapy to GVHD patients. However, shortage of nTregs in peripheral blood and time consumption of expansion in vitro may eventually limit the clinical application. Conversely, iTregs can be generated in vitro from naïve T cells and to a large number of iTregs in short time. As we known, regulatory T cells would decay after a period of time, in vivo or in vitro. Keeping a certain number of iTregs during the GVHD treatment is necessary, it should be the best to provide iTregs to the patient more than single usage. Aim Manipulated supplements of TGF-β1-induced Foxp3+ regulatory T cells should be a good way for prevention from acute graft-versus-host disease within a short time. Investigation was performed via animal model. Methods Splenocytes from C57BL/6 mice were used as a source of naïve T cells by a CD4+ naïve T cell isolation Kit. To induce Foxp3+ regulatory T cells (iTregs), the CD4+ naïve T cells were incubated with anti-CD3/CD28 coated 24-well plate in the presence of IL-2 (20U/ml) and TGF-b1 (50ng/ml) for 3 days. Foxp3+iTregs were harvested and identified as the expressions of CD4+/CD25+/FoxP3+/CD127- via flow cytometry (Fig.1). In this experiment, recipients (BALB/c) were irradiated with 800cGy and then infused with donor (C57BL/6) bone marrow cells with (TCD-BM+CD4T) or without donor T cells (TCD-BM) by intravenous injection. TCD-BM+CD4T cells mice would appear aGVHD phenotype. 8x106 Foxp3+ iTregs were injected into the TCD-BM with donor T cell mouse one or twice (TCD-BM+CD4 T +iTreg) for immunosuppression assay as shown in Fig.2. Mouse GVHD phenotype, body weights and survival rates were investigated lasting for over 90 days. Tissue sections were stained with haematoxylin-eosin. Results According to our preliminary data, it indicated the injection of iTregs in the prevention of aGVHD should be feasible (Fig.3). Consequently, we have tried to investigate preventative efficiency of repeated iTregs supplements in TCD-BM mice. First of all, we compared the single-dose of iTregs with the repetition-dose of iTregs in aGVHD prevention. The data showed in Fig.4. The data showed that the survival rate was 73.3% in repeated treatment in mice, however, the survival rate was only 45.8% in single-dose of iTregs mice within 24 days. As the TCD-BM survival rate was 76.1%. It indicated that the repetition-dose of iTregs would prevent the occurrence of aGVHD, and the survival rate was similar as the bone marrow transplantation mice. The BM-CD4T mice with aGVHD phenotype could survive no more than 10 days. Furthermore, we investigated the survival time of the continual iTreg supplements mice. The data showed in Fig.5. After 90 days later, the body weight of iTregs treated mice could maintain the recovery efficiency to 83.8±2.1% and the survival rate to 78%, comparing with the TCD-BM mice was 88.8±0.6% and 73%. All of these mice could keep alive more than 90 days. Using histographic staining, we confirmed the aGVHD prevention with repeated supplement of Foxp3+iTregs to the CD4T mice (Fig.6). The mice, administration of CD4T cells with bone marrow cells, failed to survival for the serious damage of intestine villi (Fig.6A) and Peyer's patches (Fig.6B). In contrast, CD4T mice with Foxp3+-iTregs (iTregs) could survival more than 90 days and intestine villi were recovered after 90 days (Fig.6A). Peyer's patches are an important gut associated lymphoid tissue in small intestine and play a crucial role in immune response. Therefore, we have investigated the changes of Peyer's patches (Fig.6B). As the recovery of mice with iTregs for twice, the Peyer's patches reappeared after 90 days later. It indicated that keeping more iTregs in vivo could more efficient on prevention of aGVHD. It indicated that more alive iTregs to prevent GVHD occurrence more efficient and may provide the information pre-clinically. Conclusion We showed that repetition supplement of iTreg cells to TCD-BM+CD4T-treated mice, could maintain the mice in high survival rate. Therefore, we may provide more of the functional iTregs to GVHD patients, continuously. It's a good way to prevent the occurrence of GVHD. The result should develop a novel-cell based approach for potentially reducing the risk of acute GVHD clinically. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Sija Landman ◽  
Marjan Cruijsen ◽  
Paulo C. M. Urbano ◽  
Gerwin Huls ◽  
Piet E. J. van Erp ◽  
...  

Regulatory T cells (Treg) can show plasticity whereby FOXP3 expression, the master transcription factor for Treg suppressor function, is lost and proinflammatory cytokines are produced. Optimal FOXP3 expression strongly depends on hypomethylation of the FOXP3 gene. 5-Azacytidine (Aza) and its derivative 5-aza-2′-deoxycytidine (DAC) are DNA methyltransferase inhibitors (DNMTi) that are therapeutically used in hematological malignancies, which might be an attractive strategy to promote Treg stability. Previous in vitro research primarily focused on Treg induction by DAC from naïve conventional CD4+ T cells (Tconv). Here, we examined the in vitro effect of DAC on the stability and function of FACS-sorted human naturally occurring CD4+CD25high FOXP3+ Treg. We found that in vitro activation of Treg in the presence of DAC led to a significant inhibition of Treg proliferation, but not of Tconv. Although Treg activation in the presence of DAC led to increased IFNγ expression and induction of a Thelper-1 phenotype, the Treg maintained their suppressive capacity. DAC also induced a trend towards increased IL-10 expression. In vivo studies in patients with hematological malignancies that were treated with 5-azacytidine (Vidaza) supported the in vitro findings. In conclusion, despite its potential to increase IFNγ expression, DAC does preserve the suppressor phenotype of naturally occurring Treg.


2012 ◽  
Vol 42 (6) ◽  
pp. 1436-1448 ◽  
Author(s):  
Ye Chen ◽  
Elizabeth Adams ◽  
Frederico S. Regateiro ◽  
David J. Vaux ◽  
Alexander G. Betz ◽  
...  

2013 ◽  
Vol 210 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Wing-hong Kwan ◽  
William van der Touw ◽  
Estela Paz-Artal ◽  
Ming O. Li ◽  
Peter S. Heeger

Thymus-derived (natural) CD4+ FoxP3+ regulatory T cells (nT reg cells) are required for immune homeostasis and self-tolerance, but must be stringently controlled to permit expansion of protective immunity. Previous findings linking signals transmitted through T cell–expressed C5a receptor (C5aR) and C3a receptor (C3aR) to activation, differentiation, and expansion of conventional CD4+CD25− T cells (T conv cells), raised the possibility that C3aR/C5aR signaling on nT reg cells could physiologically modulate nT reg cell function and thereby further impact the induced strength of T cell immune responses. In this study, we demonstrate that nT reg cells express C3aR and C5aR, and that signaling through these receptors inhibits nT reg cell function. Genetic and pharmacological blockade of C3aR/C5aR signal transduction in nT reg cells augments in vitro and in vivo suppression, abrogates autoimmune colitis, and prolongs allogeneic skin graft survival. Mechanisms involve C3a/C5a-induced phosphorylation of AKT and, as a consequence, phosphorylation of the transcription factor Foxo1, which results in lowered nT reg cell Foxp3 expression. The documentation that C3a/C3aR and C5a/C5aR modulate nT reg cell function via controlling Foxp3 expression suggests targeting this pathway could be exploited to manipulate pathogenic or protective T cell responses.


2009 ◽  
Vol 206 (13) ◽  
pp. 3015-3029 ◽  
Author(s):  
Loise M. Francisco ◽  
Victor H. Salinas ◽  
Keturah E. Brown ◽  
Vijay K. Vanguri ◽  
Gordon J. Freeman ◽  
...  

Both the programmed death (PD) 1–PD-ligand (PD-L) pathway and regulatory T (T reg) cells are instrumental to the maintenance of peripheral tolerance. We demonstrate that PD-L1 has a pivotal role in regulating induced T reg (iT reg) cell development and sustaining iT reg cell function. PD-L1−/− antigen-presenting cells minimally convert naive CD4 T cells to iT reg cells, showing the essential role of PD-L1 for iT reg cell induction. PD-L1–coated beads induce iT reg cells in vitro, indicating that PD-L1 itself regulates iT reg cell development. Furthermore, PD-L1 enhances and sustains Foxp3 expression and the suppressive function of iT reg cells. The obligatory role for PD-L1 in controlling iT reg cell development and function in vivo is illustrated by a marked reduction in iT reg cell conversion and rapid onset of a fatal inflammatory phenotype in PD-L1−/−PD-L2−/− Rag−/− recipients of naive CD4 T cells. PD-L1 iT reg cell development is mediated through the down-regulation of phospho-Akt, mTOR, S6, and ERK2 and concomitant with the up-regulation of PTEN, all key signaling molecules which are critical for iT reg cell development. Thus, PD-L1 can inhibit T cell responses by promoting both the induction and maintenance of iT reg cells. These studies define a novel mechanism for iT reg cell development and function, as well as a new strategy for controlling T reg cell plasticity.


Sign in / Sign up

Export Citation Format

Share Document