Antigen-Pulsed, Interleukin-4-Treated B Cells Activate Primed T Cells In Vitro but not Naive T Cells In Vivo

1995 ◽  
Vol 42 (5) ◽  
pp. 517-523 ◽  
Author(s):  
R. GRAINGER ◽  
D. N. J. HART ◽  
J. D. WATSON ◽  
M. A. BAIRD
2019 ◽  
Vol 47 (3) ◽  
pp. 244-253
Author(s):  
Mehmet Sahin ◽  
Emel Sahin

Naturally occurring regulatory T cells (nTregs) are produced under thymic (tTregs) or peripherally induced (pTregs) conditions in vivo. On the other hand, Tregs generated from naive T cells in vitro under some circumstances, such as treatment with transforming growth factor-β (TGFB), are called induced Tregs (iTregs). Tregs are especially characterized by FOXP3 expression, which is mainly controlled by DNA methylation. nTregs play important roles in the suppression of immune response and self-tolerance. The prostaglandin E2 (PGE2) pathway was reported to contribute to regulatory functions of tumor-infiltrating nTregs. In this study, we examined whether PGE2 contributes to the formation of iTregs treated with TGFB1 and 5-aza-2′-deoxycytidine (5-aza-dC), which is a DNA methyltransferase inhibitor. We found that the protein and gene expression levels of FOXP3 and IL-10 were increased in 5-aza-dC and TGFB1-treated T cells in vitro. However, the addition of PGE2 to these cells reversed these increments significantly. In CFSE-based cell suppression assays, we demonstrated that PGE2 decreased the suppressive functions of 5-aza-dC and TGFB1-treated T cells.


Blood ◽  
2004 ◽  
Vol 104 (9) ◽  
pp. 2801-2809 ◽  
Author(s):  
Matthias Gunzer ◽  
Carsten Weishaupt ◽  
Anja Hillmer ◽  
Yasmin Basoglu ◽  
Peter Friedl ◽  
...  

Abstract For activation T cells engage antigen-presenting cells (APCs) in lymphatic tissues. The contact duration and kinetics (static versus dynamic) vary considerably in different model systems; however, it is unclear whether T cells, APCs, or the environment are responsible for the observed discrepancies. Using 3-D collagen matrices as structural scaffold, we directly compared the kinetics of T-cell engagement and activation by functionally major APC types, ie, dendritic cells (DCs) and resting or activated B cells. Resting B cells engaged T cells in long-lived (several hours), adhesive, and leukocyte function-associated antigen-1 (LFA-1)-dependent conjugates in 3-D collagen as well as in intact lymph nodes in vivo. DCs and preactivated B cells, however, supported predominantly dynamic, short-lived (minutes), and sequential contacts to T cells that were dependent on high cytoskeletal activity of the APCs but could not be inhibited by anti-LFA-1 treatment. Naive T cells were most strongly activated by DCs and activated B cells, whereas resting B cells were 100-fold less efficient to induce T-cell proliferation. Thus, in the same 3-D environment, naive T cells respond with a spectrum of different interaction modes dependent on the type and activation state of the APCs. Thereby, more dynamic interaction kinetics is positively correlated with higher T-cell priming efficiency. (Blood. 2004;104: 2801-2809)


1993 ◽  
Vol 177 (3) ◽  
pp. 679-690 ◽  
Author(s):  
F Ronchese ◽  
B Hausmann

The ability of B cells or macrophages and dendritic cells (DC) to elicit class II-restricted T cell responses in vivo was compared using a mouse chimera model. Severe combined immunodeficient (SCID) mice (H-2d), reconstituted either with T or T+B lymphocytes from (H-2d x H-2b) donors, were immunized subcutaneously with protein antigen (Ag) to induce a class II-restricted T cell response. The frequency and major histocompatibility complex restriction of the resulting Ag-specific T cells were analyzed to establish whether B cells were necessary for the induction of class II-restricted T cell responses, and to determine the cell type on which priming had occurred. The results indicated that: (a) B cells are not necessary for the induction of a class II-restricted T cell response in vivo, as the frequencies of interleukin 2 (IL-2)- or IL-3-secreting T cells induced in the presence or absence of B cells were comparable. (b) Activation of naive T cells requires presentation of Ag on DC; Ag presented only on B cells is not sufficient to elicit a response. No H-2b-restricted, IL-3-secreting cells could in fact be detected in SCID mice reconstituted with naive (H-2d x H-2b) T cells and nonimmune or antigen-primed (H-2d x H-2b) B cells. (c) Previously primed T cells are able to be stimulated by Ag presented by both B cells and DC. H-2b-restricted, IL-3-secreting cells could in fact be readily demonstrated in SCID mice reconstituted with antigen-primed (H-2d x H-2b) T and B cells. Irrespective of whether the T cells were naive or previously activated, B cells were able to respond with an Ag-specific immunoglobulin G response, indicating that B cells were functional and able to present Ag in order to receive specific T cell help. Therefore, it appears that B cells are not necessary and do not participate in the initial priming of T cells; however, Ag presented by B cells can reactivate previously primed T cells. Taken together, these data indicate that during the course of an immune response Ag is first presented to naive T cells via DC, and only subsequently primed T cells can be stimulated by Ag presented by B cells.


1994 ◽  
Vol 179 (2) ◽  
pp. 425-438 ◽  
Author(s):  
M P Cooke ◽  
A W Heath ◽  
K M Shokat ◽  
Y Zeng ◽  
F D Finkelman ◽  
...  

The specificity of antibody (Ab) responses depends on focusing helper T (Th) lymphocyte signals to suitable B lymphocytes capable of binding foreign antigens (Ags), and away from nonspecific or self-reactive B cells. To investigate the molecular mechanisms that prevent the activation of self-reactive B lymphocytes, the activation requirements of B cells specific for the Ag hen egg lysozyme (HEL) obtained from immunoglobulin (Ig)-transgenic mice were compared with those of functionally tolerant B cells isolated from Ig-transgenic mice which also express soluble HEL. To eliminate the need for surface (s)Ig-mediated Ag uptake and presentation and allow the effects of sIg signaling to be studied in isolation, we assessed the ability of allogeneic T cells from bm12 strain mice to provide in vivo help to C57BL/6 strain-transgenic B cells. Interestingly, non-tolerant Ig-transgenic B cells required both allogeneic Th cells and binding of soluble HEL for efficient activation and Ab production. By contrast, tolerant self-reactive B cells from Ig/HEL double transgenic mice responded poorly to the same combination of allogeneic T cells and soluble HEL. The tolerant B cells were nevertheless normally responsive to stimulation with interleukin 4 and anti-CD40 Abs in vitro, suggesting that they retained the capacity to respond to mediators of T cell help. However, the tolerant B cells exhibited a proximal block in the sIg signaling pathway which prevented activation of receptor-associated tyrosine kinases in response to the binding of soluble HEL. The functional significance of this sIg signaling defect was confirmed by using a more potent membrane-bound form of HEL capable of triggering sIg signaling in tolerant B cells, which markedly restored their ability to collaborate with allogeneic Th cells and produce Ab. These findings indicate that Ag-specific B cells require two signals for mounting a T cell-dependent Ab response and identify regulation of sIg signaling as a mechanism for controlling self-reactive B cells.


Blood ◽  
2007 ◽  
Vol 110 (5) ◽  
pp. 1519-1529 ◽  
Author(s):  
Peter Reichardt ◽  
Bastian Dornbach ◽  
Song Rong ◽  
Stefan Beissert ◽  
Faikah Gueler ◽  
...  

Abstract Naive B cells are ineffective antigen-presenting cells and are considered unable to activate naive T cells. However, antigen-specific contact of these cells leads to stable cell pairs that remain associated over hours in vivo. The physiologic role of such pairs has not been evaluated. We show here that antigen-specific conjugates between naive B cells and naive T cells display a mature immunologic synapse in the contact zone that is absent in T-cell–dendritic-cell (DC) pairs. B cells induce substantial proliferation but, contrary to DCs, no loss of L-selectin in T cells. Surprisingly, while DC-triggered T cells develop into normal effector cells, B-cell stimulation over 72 hours induces regulatory T cells inhibiting priming of fresh T cells in a contact-dependent manner in vitro. In vivo, the regulatory T cells home to lymph nodes where they potently suppress immune responses such as in cutaneous hypersensitivity and ectopic allogeneic heart transplant rejection. Our finding might help to explain old observations on tolerance induction by B cells, identify the mature immunologic synapse as a central functional module of this process, and suggest the use of naive B-cell–primed regulatory T cells, “bTregs,” as a useful approach for therapeutic intervention in adverse adaptive immune responses.


1998 ◽  
Vol 188 (12) ◽  
pp. 2289-2299 ◽  
Author(s):  
Mark Bix ◽  
Zhi-En Wang ◽  
Bonnie Thiel ◽  
Nicholas J. Schork ◽  
Richard M. Locksley

The dysregulated expression of interleukin 4 (IL-4) can have deleterious effects on the outcome of infectious and allergic diseases. Despite this, the mechanisms by which naive T cells commit to IL-4 expression during differentiation into mature effector cells remain incompletely defined. As compared to cells from most strains of mice, activated CD4+ T cells from BALB mice show a bias towards IL-4 production and T helper 2 commitment in vitro and in vivo. Here, we show that this bias arises not from an increase in the amount of IL-4 produced per cell, but rather from an increase in the proportion of CD4+ T cells that commit to IL-4 expression. This strain-specific difference in commitment was independent of signals mediated via the IL-4 receptor and hence occurred upstream of potential autoregulatory effects of IL-4. Segregation analysis of the phenotype in an experimental backcross cohort implicated a polymorphic locus on chromosome 16. Consistent with a role in differentiation, expression of the phenotype was CD4+ T cell intrinsic and was evident as early as 16 h after the activation of naive T cells. Probabilistic gene activation is proposed as a T cell–intrinsic mechanism capable of modulating the proportion of naive T cells that commit to IL-4 production.


2012 ◽  
Vol 209 (9) ◽  
pp. 1529-1535 ◽  
Author(s):  
Susan M. Schlenner ◽  
Benno Weigmann ◽  
Qingguo Ruan ◽  
Youhai Chen ◽  
Harald von Boehmer

Regulatory T cells (T reg cells) are essential for the prevention of autoimmunity throughout life. T reg cell development occurs intrathymically but a subset of T reg cells can also differentiate from naive T cells in the periphery. In vitro, Smad signaling facilitates conversion of naive T cells into T reg cells but results in unstable Foxp3 expression. The TGF-β–Smad response element in the foxp3 locus is located in the CNS1 region in close proximity to binding sites for transcription factors implicated in TCR and retinoic acid signaling. From in vitro experiments it was previously postulated that foxp3 transcription represents a hierarchical process of transcription factor binding in which Smad3 would play a central role in transcription initiation. However, in vitro conditions generate T reg cells that differ from T reg cells encountered in vivo. To address the relevance of Smad3 binding to the CNS1 enhancer in vivo, we generated mice that exclusively lack the Smad binding site (foxp3CNS1mut). We show that binding of Smad3 to the foxp3 enhancer is dispensable for T reg cell development in newborn and adult mice with the exception of the gut.


1999 ◽  
Vol 189 (3) ◽  
pp. 587-592 ◽  
Author(s):  
Roberto Maldonado-López ◽  
Thibaut De Smedt ◽  
Patrick Michel ◽  
Jacques Godfroid ◽  
Bernard Pajak ◽  
...  

Cells of the dendritic family display some unique properties that confer to them the capacity to sensitize naive T cells in vitro and in vivo. In the mouse, two subclasses of dendritic cells (DCs) have been described that differ by their CD8α expression and their localization in lymphoid organs. The physiologic function of both cell populations remains obscure. Studies conducted in vitro have suggested that CD8α+ DCs could play a role in the regulation of immune responses, whereas conventional CD8α− DCs would be more stimulatory. We report here that both subclasses of DCs efficiently prime antigen-specific T cells in vivo, and direct the development of distinct T helper (Th) populations. Antigen-pulsed CD8α+ and CD8α− DCs are separated after overnight culture in recombinant granulocyte/macrophage colony-stimulating factor and injected into the footpads of syngeneic mice. Administration of CD8α− DCs induces a Th2-type response, whereas injection of CD8α+ DCs leads to Th1 differentiation. We further show that interleukin 12 plays a critical role in Th1 development by CD8α+ DCs. These findings suggest that the nature of the DC that presents the antigen to naive T cells may dictate the class selection of the adaptative immune response.


Sign in / Sign up

Export Citation Format

Share Document