scholarly journals PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation

2017 ◽  
Vol 214 (10) ◽  
pp. 3015-3035 ◽  
Author(s):  
Samuel Philip Nobs ◽  
Sara Natali ◽  
Lea Pohlmeier ◽  
Katarzyna Okreglicka ◽  
Christoph Schneider ◽  
...  

Type-2 immune responses are well-established drivers of chronic inflammatory diseases, such as asthma, and represent a large burden on public health systems. The transcription factor PPARγ is known to promote M2-macrophage and alveolar macrophage development. Here, we report that PPARγ plays a key role in both T cells and dendritic cells (DCs) for development of type-2 immune responses. It is predominantly expressed in mouse Th2 cells in vitro and in vivo as well as human Th2 cells from allergic patients. Using conditional knockouts, we show that PPARγ signaling in T cells, although largely dispensable for IL-4 induction, is critical for IL-33–driven Th2 effector function in type-2 allergic airway responses. Furthermore, we demonstrate that IL-4 and IL-33 promote up-regulation of PPARγ in lung-resident CD11b+ DCs, which enhances migration to draining lymph nodes and Th2 priming capacity. Thus, we uncover a surprising proinflammatory role for PPARγ and establish it as a novel, important mediator of DC–T cell interactions in type-2 immunity.

1998 ◽  
Vol 6 (3-4) ◽  
pp. 331-342 ◽  
Author(s):  
Christoph Specht ◽  
Hans-Gerd Pauels ◽  
Christian Becker ◽  
Eckehart Kölsch

The involvement of counteractiveCD8+T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model.CD8+Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cellsin vivoandin vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinducedCD8+T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γas a suppressive factor. Whereas most longterm cultivated CD8+ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primaryin vitroTc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10.CD8+Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γor IL-12. In contrast, ADJ-PC- 5-specificCD8+Tc cells from immunized mice are IFN-γproducing Tc1 cells. Since the primaryin vitroTc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γthese Tc1 cells behave similar to the suppressiveCD8+T cells that are induced during early stages of ADJ-PC-5 tumorigenesis.


2003 ◽  
Vol 198 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Guillaume Oldenhove ◽  
Magali de Heusch ◽  
Georgette Urbain-Vansanten ◽  
Jacques Urbain ◽  
Charlie Maliszewski ◽  
...  

Recent evidence suggests that in addition to their well known stimulatory properties, dendritic cells (DCs) may play a major role in peripheral tolerance. It is still unclear whether a distinct subtype or activation status of DC exists that promotes the differentiation of suppressor rather than effector T cells from naive precursors. In this work, we tested whether the naturally occurring CD4+ CD25+ regulatory T cells (Treg) may control immune responses induced by DCs in vivo. We characterized the immune response induced by adoptive transfer of antigen-pulsed mature DCs into mice depleted or not of CD25+ cells. We found that the development of major histocompatibility complex class I and II–restricted interferon γ–producing cells was consistently enhanced in the absence of Treg. By contrast, T helper cell (Th)2 priming was down-regulated in the same conditions. This regulation was independent of interleukin 10 production by DCs. Of note, splenic DCs incubated in vitro with Toll-like receptor ligands (lipopolysaccharide or CpG) activated immune responses that remained sensitive to Treg function. Our data further show that mature DCs induced higher cytotoxic activity in CD25-depleted recipients as compared with untreated hosts. We conclude that Treg naturally exert a negative feedback mechanism on Th1-type responses induced by mature DCs in vivo.


2022 ◽  
Vol 12 ◽  
Author(s):  
Valentina Ceglia ◽  
Sandra Zurawski ◽  
Monica Montes ◽  
Mitchell Kroll ◽  
Aurélie Bouteau ◽  
...  

CD40 is a potent activating receptor expressed on antigen-presenting cells (APCs) of the immune system. CD40 regulates many aspects of B and T cell immunity via interaction with CD40L expressed on activated T cells. Targeting antigens to CD40 via agonistic anti-CD40 antibody fusions promotes both humoral and cellular immunity, but current anti-CD40 antibody-antigen vaccine prototypes require co-adjuvant administration for significant in vivo efficacy. This may be a consequence of dulling of anti-CD40 agonist activity via antigen fusion. We previously demonstrated that direct fusion of CD40L to anti-CD40 antibodies confers superagonist properties. Here we show that anti-CD40-CD40L-antigen fusion constructs retain strong agonist activity, particularly for activation of dendritic cells (DCs). Therefore, we tested anti-CD40-CD40L antibody fused to antigens for eliciting immune responses in vitro and in vivo. In PBMC cultures from HIV-1-infected donors, anti-CD40-CD40L fused to HIV-1 antigens preferentially expanded HIV-1-specific CD8+ T cells versus CD4+ T cells compared to analogous anti-CD40-antigen constructs. In normal donors, anti-CD40-CD40L-mediated delivery of Influenza M1 protein elicited M1-specific T cell expansion at lower doses compared to anti-CD40-mediated delivery. Also, on human myeloid-derived dendritic cells, anti-CD40-CD40L-melanoma gp100 peptide induced more sustained Class I antigen presentation compared to anti-CD40-gp100 peptide. In human CD40 transgenic mice, anti-CD40-CD40L-HIV-1 gp140 administered without adjuvant elicited superior antibody responses compared to anti-CD40-gp140 antigen without fused CD40L. In human CD40 mice, compared to the anti-CD40 vehicle, anti-CD40-CD40L delivery of Eα 52-68 peptide elicited proliferating of TCR I-Eα 52-68 CD4+ T cells producing cytokine IFNγ. Also, compared to controls, only anti-CD40-CD40L-Cyclin D1 vaccination of human CD40 mice reduced implanted EO771.LMB breast tumor cell growth. These data demonstrate that human CD40-CD40L antibody fused to antigens maintains highly agonistic activity and generates immune responses distinct from existing low agonist anti-CD40 targeting formats. These advantages were in vitro skewing responses towards CD8+ T cells, increased efficacy at low doses, and longevity of MHC Class I peptide display; and in mouse models, a more robust humoral response, more activated CD4+ T cells, and control of tumor growth. Thus, the anti-CD40-CD40L format offers an alternate DC-targeting platform with unique properties, including intrinsic adjuvant activity.


2001 ◽  
Vol 69 (4) ◽  
pp. 2456-2461 ◽  
Author(s):  
Caroline Demangel ◽  
Umaimainthan Palendira ◽  
Carl G. Feng ◽  
Andrew W. Heath ◽  
Andrew G. D. Bean ◽  
...  

ABSTRACT The resolution of pulmonary tuberculosis (TB) critically depends on the development of the Th1 type of immune responses, as exemplified by the exacerbation of TB in IL-12-deficient mice. Therefore, vaccination strategies optimizing IL-12 production by antigen-presenting cells (APC) in response to mycobacteria may have enhanced protective efficacy. Since dendritic cells (DC) are the critical APC for activation of CD4+ and CD8+ T cells, we examined whether stimulation of Mycobacterium bovis bacillus Calmette Guérin (BCG)-infected DC via CD40 increased their ability to generate Th1-oriented cellular immune responses. Incubation of DC with an agonistic anti-CD40 antibody activated CD40 signaling in DC, as shown by increased expression of major histocompatibility complex class II and costimulatory molecules, mRNA production for proinflammatory cytokines and interleukin 12 (IL-12) p40. This activation pattern was maintained when DC were stimulated with anti-CD40 antibody and infected with BCG. Importantly, CD40-stimulated BCG-infected DC displayed increased capacity to release bioactive IL-12 and to activate gamma interferon (IFN-γ) producing T cells in vitro. Moreover, when C57BL/6 mice were immunized with these DC and challenged with aerosol Mycobacterium tuberculosis, increased levels of mRNA for IL-12 p40, IL-18, and IFN-γ were present in the draining mediastinal lymph nodes. However, the mycobacterial burden in the lungs was not reduced compared to that in mice immunized with BCG-infected non-CD40-stimulated DC. Therefore, although the manipulation of DC via CD40 is effective for enhancing immune responses to mycobacteria in vivo, additional strategies are required to increase protection against virulent M. tuberculosis infection.


2001 ◽  
Vol 194 (8) ◽  
pp. 1069-1080 ◽  
Author(s):  
Xiaowen Wang ◽  
Tim Mosmann

The differentiation of antigen-stimulated naive CD4 T cells into T helper (Th)1 or Th2 effector cells can be prevented in vitro by transforming growth factor (TGF)-β and anti–interferon (IFN)-γ. These cells proliferate and synthesize interleukin (IL)-2 but not IFN-γ or IL-4, and can differentiate into either Th1 or Th2 cells. We have now used two-color Elispots to reveal substantial numbers of primed cells producing IL-2 but not IL-4 or IFN-γ during the Th1- or Th2-biased immune responses induced by soluble proteins or with adjuvants. These cells were CD4+CD44high and were present during immediate and long-term immune responses of normal mice. Naive T cell receptor for antigen (TCR) transgenic (DO11.10) T cells were primed in vivo after adoptive transfer into normal hosts and FACS® cloned under conditions that did not allow further differentiation. After clonal proliferation, aliquots of each clone were cultured in Th1- or Th2-inducing conditions. Many in vivo–primed cells were uncommitted, secreting IL-2 but not IL-4 or IFN-γ at the first cloning step, but secreting either IL-4 or IFN-γ after differentiation in the appropriate conditions. These in vivo-primed, uncommitted, IL-2–producing cells may constitute an expanded pool of antigen-specific cells that provide extra flexibility for immune responses by differentiating into Th1 or Th2 phenotypes later during the same or subsequent immune responses.


2019 ◽  
Vol 17 (1) ◽  
pp. 142-150
Author(s):  
Ying Liu ◽  
Qian Wu ◽  
Peng Li ◽  
Weijie Liu ◽  
Yongri Jin ◽  
...  

AbstractGinsenoside Rh2 is one of the rare ginsenosides extracted from Panax ginseng C. A. Mey. The anti-allergic activity of ginsenoside Rh2 has been documented in some literature. In this work, an anti-allergic mechanism of ginsenoside Rh2 was investigated by focusing on the differentiation of T cells through Langerhans cells (LCs). Langerhans cell-like dendritic cells (LDCs) were generated in vitro and were used as substitute for LCs.In vivo the mRNA expression for IFN-γ and CXCR3 of T cells was increased after being injected with ginsenoside Rh2-treated LDCs thereby increasing the concentration of IFN-γ in the culture supernatants of CD3+/CD28+ T lymphocytes. However,in vitro, the expression of mRNA for CD40 and CD80 on ginsenoside Rh2-treated LDCs was up-regulated significantly and the endocytic activity of LDCs was down-regulated slightly. These findings indicate that T cells differentiation could be regulated by ginsenoside Rh2 through LDCs in vivo by altering the antigen presenting capacity, maturation and phagocytosis of LDCs.


2001 ◽  
Vol 75 (19) ◽  
pp. 9493-9501 ◽  
Author(s):  
Selvarangan Ponnazhagan ◽  
Gandham Mahendra ◽  
David T. Curiel ◽  
Denise R. Shaw

ABSTRACT Dendritic cells (DCs) are pivotal antigen-presenting cells for regulating immune responses. A major focus of contemporary vaccine research is the genetic modification of DCs to express antigens or immunomodulatory molecules, utilizing a variety of viral and nonviral vectors, to induce antigen-specific immune responses that ameliorate disease states as diverse as malignancy, infection, autoimmunity, and allergy. The present study has evaluated adeno-associated virus (AAV) type 2 as a vector for ex vivo gene transfer to human peripheral blood monocyte (MO)-derived DCs. AAV is a nonpathogenic parvovirus that infects a wide variety of human cell lineages in vivo and in vitro, for long-term transgene expression without requirements for cell proliferation. The presented data demonstrate that recombinant AAV (rAAV) can efficiently transduce MOs as well as DCs generated by MO culture with granulocyte-macrophage colony-stimulating factor plus interleukin in vitro. rAAV transgene expression in MO-derived DCs could be enhanced by etoposide, previously reported to enhance AAV gene expression. rAAV transduction of freshly purified MO followed by 7 days of culture with cytokines to generate DCs, and subsequent sorting for coexpression of DC markers CD1a and CD40, showed robust transgene expression as well as evidence of nuclear localization of the rAAV genome in the DC population. Phenotypic analyses using multiple markers and functional assays of one-way allogeneic mixed leukocyte reactions indicated that rAAV-transduced MO-derived DCs were as equivalent to nontransduced DCs. These results support the utility of rAAV vectors for future human DC vaccine studies.


2021 ◽  
Vol 9 (3) ◽  
pp. e001803
Author(s):  
Louise M E Müller ◽  
Gemma Migneco ◽  
Gina B Scott ◽  
Jenny Down ◽  
Sancha King ◽  
...  

BackgroundMultiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported.MethodsThis study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment.ResultsUsing the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes.ConclusionThese data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.


Leukemia ◽  
2021 ◽  
Author(s):  
Mohamed H. S. Awwad ◽  
Abdelrahman Mahmoud ◽  
Heiko Bruns ◽  
Hakim Echchannaoui ◽  
Katharina Kriegsmann ◽  
...  

AbstractElimination of suppressive T cells may enable and enhance cancer immunotherapy. Here, we demonstrate that the cell membrane protein SLAMF7 was highly expressed on immunosuppressive CD8+CD28-CD57+ Tregs in multiple myeloma (MM). SLAMF7 expression associated with T cell exhaustion surface markers and exhaustion-related transcription factor signatures. T cells from patients with a high frequency of SLAMF7+CD8+ T cells exhibited decreased immunoreactivity towards the MART-1aa26–35*A27L antigen. A monoclonal anti-SLAMF7 antibody (elotuzumab) specifically depleted SLAMF7+CD8+ T cells in vitro and in vivo via macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). Anti-SLAMF7 treatment of MM patients depleted suppressive T cells in peripheral blood. These data highlight SLAMF7 as a marker for suppressive CD8+ Treg and suggest that anti-SLAMF7 antibodies can be used to boost anti-tumoral immune responses in cancer patients.


Sign in / Sign up

Export Citation Format

Share Document