scholarly journals Differential Activation of CD8+Tumor-Specific Tc1 and Tc2 Cells by an IL-10-Producing Murine Plasmacytoma

1998 ◽  
Vol 6 (3-4) ◽  
pp. 331-342 ◽  
Author(s):  
Christoph Specht ◽  
Hans-Gerd Pauels ◽  
Christian Becker ◽  
Eckehart Kölsch

The involvement of counteractiveCD8+T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model.CD8+Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cellsin vivoandin vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinducedCD8+T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γas a suppressive factor. Whereas most longterm cultivated CD8+ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primaryin vitroTc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10.CD8+Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γor IL-12. In contrast, ADJ-PC- 5-specificCD8+Tc cells from immunized mice are IFN-γproducing Tc1 cells. Since the primaryin vitroTc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γthese Tc1 cells behave similar to the suppressiveCD8+T cells that are induced during early stages of ADJ-PC-5 tumorigenesis.

2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 150-150
Author(s):  
Sergei Kusmartsev ◽  
Johaness Vieweg ◽  
Victor Prima

150 Background: NKG2D is a lectin-like type 2 transmembrane receptor that expressed by natural killer cells and some T cell subsets. Stimulation of NKG2D receptor with specific agonistic ligands produces activating signals through signaling adaptor protein DAP10 leading to the enhanced cytokine production, proliferation, and cytotoxicity against tumor cells. There is strong evidence that NKG2D ligands are expressed in many human tumors, including melanoma, leukemia, myeloma, glioma, and carcinomas of the prostate, breast, lung, and colon. Recent studies also demonstrated that T cells bearing chimeric antigen receptor (CAR) NKG2D linked to CD3ζ (zeta) chain produce marked in vitro and in vivo anti-tumor effects. The aim of current study was to determine whether human T cells bearing chimeric antigen receptor (CAR) NKGD2 linked to CD3ε (epsilon) chain could be activated by the NKG2D-specific stimulation and able to kill human cancer cells. Given the important role of CD3ε in activation and survival of T cells, we hypothesized that NKG2D-CDε-bearing T cells could exert strong in vitro and in vivo anti-tumor effects. Methods: NKG2D CAR was produced by linking human NKG2D to DAP10 and the cytoplasmic portion of the CD3ε chain. Original full-length human cDNA clones were obtained from NIH Mammalian Gene Collection (MGC). Functional domain analysis and oligonucleotide design in the in-Fusion system of DNA cloning (Clontech) was used to generate the retroviral expression constructs. Results: Human PBMC-derived T cells were retrovirally transduced with newly generated NKG2D-CD3ε CAR DNA construct. These NKG2D CAR-expressing human T cells responded to NKG2D-specific activation by producing IFN-γ and exhibited significant cellular cytotoxicity against human tumor cells in vitro. In vivo studies demonstrated that NKG2D-CD3ε-bearing cells are capable of inhibiting growth of DU-145 human prostate cancer in the immunodeficient mice. Conclusions: Collectively, our data indicate the feasibility of developing chimeric antigen receptor NKG2D-CD3ε for T cells and suggest that adoptive transfer of T cells bearing NKG2D-CD3ε CAR could be potentially effective for immunotherapy of cancer patients.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A175-A175
Author(s):  
Kathrin Davari ◽  
Tristan Holland ◽  
Laura Prassmayer ◽  
Giulia Longinotti ◽  
Kenneth Ganley ◽  
...  

BackgroundThe cancer-testis antigen MAGE-A4 is an attractive target for T cell-based immunotherapy, especially for indications with unmet clinical need like non-small-cell lung carcinoma or triple-negative breast cancer. Overcoming high tumor burden using adoptive transfer of T cells modified to express a transgenic T cell receptor (TCR) demands optimal recognition of the corresponding target on tumor cells by the TCR-modified T cells (TCR-Ts). Here we describe the isolation and pre-clinical characterization of high avidity TCR-Ts expressing a human leucocyte antigen (HLA)-A*02:01-restricted MAGE-A4-specific TCR that is fully functional in T cells irrespective of CD4 or CD8 co-receptor expression.MethodsAn unbiased CD137-based sorting approach was first used to identify an immunogenic MAGE-A4-derived candidate epitope that was properly processed and presented on HLA-A2 molecules encoded by the HLA-A*02:01 allele. To isolate high avidity T cells via subsequent multimer sorting, an in vitro priming approach using HLA-A2-negative donors (allogeneic-HLA-restricted priming approach) was conducted to bypass central tolerance to this self-antigen. Pre-clinical parameters of safety and activity were assessed in a comprehensive set of in vitro and in vivo studies of the lead TCR candidate derived from a selected T cell clone.ResultsA TCR recognizing the MAGE-A4-derived decapeptide GVYDGREHTV was isolated from primed T cells of a non-tolerant HLA-A2-negative donor. The respective TCR-T cell product bbT485, expressing the lead TCR in T cells from healthy donors, was demonstrated pre-clinically to have a favorable safety profile and superior in vivo potency compared to TCR-Ts made using a TCR derived from an HLA-A2-positive donor bearing a tolerized T cell repertoire to self-antigens. The natural high avidity allogeneic (allo)-derived TCR was found to be CD8 co-receptor-independent, allowing effector functions to be elicited in transgenic CD4+ T helper cells. These CD4+ TCR-T cells not only supported an anti-tumor response by direct killing of MAGE-A4-positive tumor cells, but also upregulated hallmarks associated with helper function, such as CD154 expression and release of key cytokines upon tumor-specific stimulation.ConclusionsThe extensive pre-clinical assessment of safety and in vivo potency of this non-mutated high avidity, CD8 co-receptor-independent, MAGE-A4-specific HLA-A2 restricted TCR provide the basis for its use in clinical TCR-T immunotherapy studies. The ability of this co-receptor-independent TCR to activate all transduced T cells (irrespective of CD4 or CD8 expression) could potentially provide enhanced cellular responses in the clinical setting through the induction of functionally diverse T cell subsets that goes beyond what is currently tested in the clinic.


2020 ◽  
Author(s):  
Jonathan W. Lo ◽  
Maria Vila de Mucha ◽  
Luke B. Roberts ◽  
Natividad Garrido-Mesa ◽  
Arnulf Hertweck ◽  
...  

AbstractT-bet is the lineage-specifying transcription factor for CD4+ T helper type 1 (TH1) cells. T-bet has also been found in other CD4+ T cell subsets, including TH17 cells and TREG, where it modulates their functional characteristics. However, we lack information on when and where T-bet is expressed during T cell differentiation and how this impacts T cell function. To address this, we traced the ontogeny of T-bet-expressing cells using a fluorescent fate-mapping mouse line. We demonstrate that T-bet is expressed in a subset of CD4+ T cells with naïve cell surface markers and that this novel cell population is phenotypically and functionally distinct from conventional naïve CD4+ T cells. These cells are also distinct from previously described populations of memory phenotype and stem cell-like T cells. Naïve-like T-bet-experienced cells are polarised to the TH1 lineage, predisposed to produce IFNγ upon cell activation, and resist repolarisation to other lineages in vitro and in vivo. These results demonstrate that lineage-specifying factors can function to polarise T cells in the absence of canonical markers of T cell activation and that this has an impact on the subsequent T helper response.


2020 ◽  
Vol 8 (2) ◽  
pp. e000330
Author(s):  
Feng-Ying Huang ◽  
Jin-Yan Wang ◽  
Shu-Zhen Dai ◽  
Ying-Ying Lin ◽  
Yan Sun ◽  
...  

BackgroundThe oncolytic Newcastle disease virus (NDV) is inherently able to trigger the lysis of tumor cells and induce the immunogenic cell death (ICD) of tumor cells and is also an excellent gene-engineering vector. The macrophage inflammatory protein-3α (MIP-3α) is a specific chemokine for dendritic cells (DCs). Thus, we constructed a recombinant NDV expressing MIP-3α (NDV-MIP3α) as an in vivo DC vaccine for amplifying antitumor immunities.MethodsThe recombinant NDV-MIP3α was constructed by the insertion of MIP-3α cDNA between the P and M genes. Western blotting assay and ELISA were used to detect MIP-3α, HMGB1, IgG, and ATP in the supernatant and sera. The chemotaxis of DCs was examined by Transwell chambers. The phenotypes of the immune cells (eg, DCs) were analyzed by flow cytometry. The antitumor efficiency of NDV-MIP3α was observed in B16 and CT26 tumor-bearing mice. Immunofluorescence and immunohistochemistry were applied to observe the ecto-calreticulin (CRT) and intratumoral attraction of DCs. Adoptive transfer of splenocytes and antibodies and depletion of T-cell subsets were used to evaluate the relationship between antitumor immunities and the role of the T-cell subtype.ResultsThe findings show that NDV-MIP3α has almost the same capabilities of tumor lysis and induction of ICD as the wild-type NDV (NDV-WT). MIP-3α secreted by NDV-MIP3α could successfully attract DCs in vitro and in vivo. Both B16 and CT26 cells infected with NDV-MIP3α could strongly promote DC maturation and activation. Compared with NDV-WT, intratumoral injection of NDV-MIP3α and the adoptive transfer of T lymphocytes from mice injected with NDV-MIP3α resulted in a significant suppression of B16 and CT26 tumor growth. The NDV-MIP3α-induced production of tumor-specific cellular and humoral immune responses was dependent on CD8+ T cells and partially on CD4+ T cells. A significant reversion of tumor microenvironments was found in the mice injected with NDV-MIP3α.ConclusionsCompared with NDV-WT, the recombinant NDV-MIP3α as an in vivo DC vaccine demonstrates enhanced antitumor activities through the induction of stronger system immunities and modulation of the tumor microenvironment. This strategy may be a potential approach for the generation of an in vivo DC vaccine.


2017 ◽  
Vol 214 (10) ◽  
pp. 3015-3035 ◽  
Author(s):  
Samuel Philip Nobs ◽  
Sara Natali ◽  
Lea Pohlmeier ◽  
Katarzyna Okreglicka ◽  
Christoph Schneider ◽  
...  

Type-2 immune responses are well-established drivers of chronic inflammatory diseases, such as asthma, and represent a large burden on public health systems. The transcription factor PPARγ is known to promote M2-macrophage and alveolar macrophage development. Here, we report that PPARγ plays a key role in both T cells and dendritic cells (DCs) for development of type-2 immune responses. It is predominantly expressed in mouse Th2 cells in vitro and in vivo as well as human Th2 cells from allergic patients. Using conditional knockouts, we show that PPARγ signaling in T cells, although largely dispensable for IL-4 induction, is critical for IL-33–driven Th2 effector function in type-2 allergic airway responses. Furthermore, we demonstrate that IL-4 and IL-33 promote up-regulation of PPARγ in lung-resident CD11b+ DCs, which enhances migration to draining lymph nodes and Th2 priming capacity. Thus, we uncover a surprising proinflammatory role for PPARγ and establish it as a novel, important mediator of DC–T cell interactions in type-2 immunity.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A746-A746
Author(s):  
Kristel Kemper ◽  
Ellis Gielen ◽  
Mischa Houtkamp ◽  
Peter Boross ◽  
Saskia Burm ◽  
...  

BackgroundThe tumor-associated antigen 5T4 is expressed across a wide range of solid cancers. DuoBody-CD3x5T4 is a bispecific antibody (bsAb) that crosslinks CD3 on T cells with 5T4 on tumor cells, thereby inducing T-cell activation and T-cell mediated cytotoxicity in 5T4-expressing tumor cells. Here, we tested the capacity of DuoBody-CD3x5T4 to engage different T-cell subsets in vitro and investigated the mechanism of action (MoA) in vivo by combining preclinical efficacy studies with exploratory pharmacodynamic (PD) biomarker analysesMethodsImmunohistochemistry was performed on patient-derived tumor tissue-microarrays using a commercial 5T4 monoclonal antibody (EPR5529). The capacity of DuoBody-CD3x5T4 to engage naïve and memory T-cell subsets was assessed in co-cultures of T cells and 5T4-positive tumor cells, using T-cell activation and T-cell mediated cytotoxicity as readouts. Anti-tumor activity in vivo as well as peripheral and intratumoral PD biomarkers were investigated in humanized mice bearing 5T4-expressing cell line-derived xenograft (CDX) or patient-derived xenograft (PDX) tumor models.ResultsHigh prevalence of 5T4 expression (in >86% of biopsies) was observed in NSCLC, SCCHN, TNBC, bladder, esophageal, prostate and uterine cancer. In co-cultures of 5T4+ tumor cells and T cells in vitro, DuoBody-CD3x5T4 induced dose-dependent cytotoxicity, associated with T-cell activation, proliferation, and cytokine, perforin and granzyme production. Crosslinking of T cells with 5T4-expressing tumor cells was essential as no cytotoxicity was observed in CRISPR-Cas9-generated 5T4-knockout tumor cells or with control bsAbs targeting only CD3 or 5T4. Importantly, naïve and memory CD4+ or CD8+ T-cell subsets had equal capacity to mediate DuoBody-CD3x5T4-induced cytotoxicity, although naïve T-cell subsets showed slower kinetics. DuoBody-CD3x5T4 (0.5–20 mg/kg) demonstrated anti-tumor activity in 5T4+ breast and prostate cancer CDX and lung cancer PDX models in humanized mice. Treatment with DuoBody-CD3x5T4 was associated with intratumoral and peripheral T-cell activation as well as elevated cytokine levels, including IFNγ, IL-6 and IL-8, in peripheral blood.ConclusionsDuoBody-CD3x5T4 induced T-cell mediated cytotoxicity in 5T4-expressing tumor cells, associated with T-cell activation and cytokine production in vitro. DuoBody-CD3x5T4 efficiently engaged naïve and memory T cells within both CD4+ and CD8+ T-cell populations to induce T-cell mediated cytotoxicity in 5T4+ tumor cells. In humanized CDX and PDX mouse models, DuoBody-CD3x5T4 showed anti-tumor activity, in addition to PD biomarkers associated with T-cell activation in the tumor and periphery. Currently, DuoBody-CD3x5T4 is being investigated in a first-in-human clinical trial for the treatment of solid tumors (NCT04424641), in which exploratory biomarker analyses to study the clinical MoA and PD are included.Ethics ApprovalThe CDX animal experiments performed are in compliance with the Dutch animal protection law (WoD) translated from the directives (2010/63/EU) and are approved by the Ethical committee of Utrecht. For the PDX models, all patients had given written informed consent, and the animal experiments were carried out in accordance with the German Animal Protection Law (LaGeSoBerlin, A0452/08). The studies were approved by the local Institutional Review Board of Charite University Medicine, Germany.


2021 ◽  
Vol 9 (3) ◽  
pp. e001803
Author(s):  
Louise M E Müller ◽  
Gemma Migneco ◽  
Gina B Scott ◽  
Jenny Down ◽  
Sancha King ◽  
...  

BackgroundMultiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported.MethodsThis study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment.ResultsUsing the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes.ConclusionThese data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A738-A738
Author(s):  
Bryan Grogan ◽  
Reice James ◽  
Michelle Ulrich ◽  
Shyra Gardai ◽  
Ryan Heiser ◽  
...  

BackgroundRegulatory T cells (Tregs) play an important role in maintaining immune homeostasis, preventing excessive inflammation in normal tissues. In cancer, Tregs hamper anti-tumor immunosurveillance and facilitate immune evasion. Selective targeting of intratumoral Tregs is a potentially promising treatment approach. Orthogonal evaluation of tumor-infiltrating lymphocytes (TILs) in solid tumors in mice and humans have identified CCR8, and several tumor necrosis family receptors (TNFRs), including TNFSFR8 (CD30), as receptors differentially upregulated on intratumoral Tregs compared to normal tissue Tregs and other intratumoral T cells, making these intriguing therapeutic targets.Brentuximab vedotin (BV) is approved for classical Hodgkin lymphoma (cHL) across multiple lines of therapy including frontline use in stage III/IV cHL in combination with doxorubicin, vinblastine, and dacarbazine. BV is also approved for certain CD30-expressing T-cell lymphomas. BV is comprised of a CD30-directed monoclonal antibody conjugated to the highly potent microtubule-disrupting agent monomethyl auristatin E (MMAE).The activity of BV in lymphomas is thought to primarily result from tumor directed intracellular MMAE release, leading to mitotic arrest and apoptotic cell death.The role CD30 plays in normal immune function is unclear, with both costimulatory and proapoptotic roles described. CD30 is transiently upregulated following activation of memory T cells and expression has been linked to highly activated/suppressive IRF4+ effector Tregs.MethodsHere we evaluated the activity of BV on CD30-expressing T cell subsets in vitro and in vivo.ResultsTreatment of enriched T cell subsets with clinically relevant concentrations of BV drove selective depletion of CD30-expressing Tregs > CD30-expressingCD4+ T memory cells, with minimal effects on CD30-expressing CD8+ T memory cells. In a humanized xeno-GVHD model, treatment with BV selectively depleted Tregs resulting in accelerated wasting and robust T cell expansion. The observed differential activity on Tregs is likely attributable to significant increases in CD30 expression and reduced efflux pump activity relative to other T cell subsets. Interestingly, blockade of CD25 signaling prevents CD30 expression on T cell subsets without impacting proliferation, suggesting a link between CD25, the high affinity IL-2 receptor, and CD30 expression.ConclusionsTogether, these data suggest that BV may have an immunomodulatory effect through selective depletion of highly suppressive CD30-expressing Tregs.AcknowledgementsThe authors would like to thank Michael Harrison, PharmD for their assistance in abstract preparation.Ethics ApprovalAnimals studies were approved by and conducted in accordance with Seattle Genetics Institutional Care and Use Committee protocol #SGE-024.


Leukemia ◽  
2021 ◽  
Author(s):  
Mohamed H. S. Awwad ◽  
Abdelrahman Mahmoud ◽  
Heiko Bruns ◽  
Hakim Echchannaoui ◽  
Katharina Kriegsmann ◽  
...  

AbstractElimination of suppressive T cells may enable and enhance cancer immunotherapy. Here, we demonstrate that the cell membrane protein SLAMF7 was highly expressed on immunosuppressive CD8+CD28-CD57+ Tregs in multiple myeloma (MM). SLAMF7 expression associated with T cell exhaustion surface markers and exhaustion-related transcription factor signatures. T cells from patients with a high frequency of SLAMF7+CD8+ T cells exhibited decreased immunoreactivity towards the MART-1aa26–35*A27L antigen. A monoclonal anti-SLAMF7 antibody (elotuzumab) specifically depleted SLAMF7+CD8+ T cells in vitro and in vivo via macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). Anti-SLAMF7 treatment of MM patients depleted suppressive T cells in peripheral blood. These data highlight SLAMF7 as a marker for suppressive CD8+ Treg and suggest that anti-SLAMF7 antibodies can be used to boost anti-tumoral immune responses in cancer patients.


Sign in / Sign up

Export Citation Format

Share Document