scholarly journals Development and differentiation of early innate lymphoid progenitors

2017 ◽  
Vol 215 (1) ◽  
pp. 249-262 ◽  
Author(s):  
Christelle Harly ◽  
Maggie Cam ◽  
Jonathan Kaye ◽  
Avinash Bhandoola

Early innate lymphoid progenitors (EILPs) have recently been identified in mouse adult bone marrow as a multipotential progenitor population specified toward innate lymphoid cell (ILC) lineages, but their relationship with other described ILC progenitors is still unclear. In this study, we examine the progenitor–successor relationships between EILPs, all-lymphoid progenitors (ALPs), and ILC precursors (ILCps). Functional, bioinformatic, phenotypical, and genetic approaches collectively establish EILPs as an intermediate progenitor between ALPs and ILCps. Our work additionally provides new candidate regulators of ILC development and clearly defines the stage of requirement of transcription factors key for early ILC development.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3416-3416
Author(s):  
Genís Campreciós ◽  
Xin Zhang ◽  
Yan Kou ◽  
Avi Ma'ayan ◽  
Saghi Ghaffari

Abstract Transcriptional control of last stages of erythropoiesis is a complex and well orchestrated process controlled by lineage-specific transcription factors. The precise contribution of the different transcription factors to this multistep process has not been fully elucidated. Foxo3 is a transcription factor that is required for terminal erythroid maturation and Foxo3 mutant mice exhibit ineffective erythropoiesis. In order to gain further insight into the contribution of Foxo3 to the control of adult terminal erythroid maturation we analyzed the transcriptome of three adult bone marrow erythroid precursor populations: pro-, basophilic and polychromatophilic erythroblasts from wild type and Foxo3-/- mice. Populations were FACS sorted according to their TER119 and CD44 cell surface expression and FSC properties. RNA was then isolated and sequenced using the Illumina GaII platform. Genes were grouped into 3 categories according to their expression during erythroid cell maturation using the Short Time Series Expression Miner (STEM) program: no change (4577 genes), down-regulated (2868 genes) or up-regulated (2637) (Figure 1). Enrichment analysis of groups of genes using the ChEA database identified Myb, Meis1, Runx1, Fli1 and PU.1 as the main transcription factors regulating gene repression over erythroid maturation. In contrast, ChEA identified known erythroid transcription factors like Gata1, Eklf and Tal1 to drive the up-regulation of many of the erythroid-specific genes. This analysis also enabled the identification of putative novel transcription factors implicated in erythroid cell maturation. Interestingly, the difference between WT and Foxo3-/- cells increased gradually from pro- to polychromatophilic erythroblasts in correlation with increased Foxo3 expression during these steps of maturation. Strikingly, pathway enrichment analysis detected several immune-related pathways such as Toll-like receptors, TGF-β and IL-1 signaling as expressed in maturing wild type erythroid cells and significantly deregulated in Foxo3-/- cells. The expression of a number of these immune genes in erythroid cells has been validated by qRT-PCR. In addition, among others, a cluster of genes from the autophagy pathway was noted to be significantly down-regulated in Foxo3 mutant erythroid cells. In order to better dissect Foxo3 transcriptional control during erythroid maturation, STEM analysis of Foxo3-/- samples revealed an unexpected number of differences compared to WT. Most remarkably the STEM analysis identified that 90% of the 1198 genes that are continuously up-regulated during erythroid maturation from pro- to polychromatophilic are highly compromised in their level of expression during erythroid maturation in the absence of Foxo3. Interestingly, this group was also enriched for Foxo3 direct target genes as determined by ChIP-seq studies. We also identified a subset of genes whose expression increased from pro- to basophilic erythroblasts but decreased thereafter in the absence of Foxo3 in contrast to wild type cells. Interestingly, ChEA analysis on this group identified a subset of genes that are targets of Gata1, Eklf and Tal1 that may require Foxo3 for their full expression at the last stages of erythroid cell maturation. In conclusion, we present an unbiased genome-wide approach using RNA sequencing of adult bone marrow erythroid cells to study the contribution of Foxo3 to the regulation of gene expression at the last stages of erythroid cell maturation. This analysis enabled us to identify novel genes and pathways whose function in the control of red cell generation requires further investigations.Fig. 1Genes with FPKM>2 from WT and Foxo3-/- samples analyzed with the STEM software, divided into 6 different categories according to their expression profiles during terminal erythroid cell maturation from pro- to polychromatophillic erythroblasts. Genes were then further grouped in 3 subsets: down-regulated, up-regulated and no change. The number of genes in each profile is indicated at the bottom for wild type and Foxo3-/- samples.Fig. 1. Genes with FPKM>2 from WT and Foxo3-/- samples analyzed with the STEM software, divided into 6 different categories according to their expression profiles during terminal erythroid cell maturation from pro- to polychromatophillic erythroblasts. Genes were then further grouped in 3 subsets: down-regulated, up-regulated and no change. The number of genes in each profile is indicated at the bottom for wild type and Foxo3-/- samples. Disclosures: No relevant conflicts of interest to declare.


Stem Cells ◽  
2006 ◽  
Vol 24 (12) ◽  
pp. 2703-2713 ◽  
Author(s):  
Rosana Pelayo ◽  
Kozo Miyazaki ◽  
Jiaxue Huang ◽  
Karla P. Garrett ◽  
Dennis G. Osmond ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yu ◽  
Alejandra Vargas Valderrama ◽  
Zhongchao Han ◽  
Georges Uzan ◽  
Sina Naserian ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. Methods MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25−T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. Results We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. Conclusions These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.


1993 ◽  
Vol 56 (3) ◽  
pp. 709-716 ◽  
Author(s):  
KANG HOWSON-JAN ◽  
YOUSIF H. MATLOUB ◽  
DANIEL A. VALLERA ◽  
BRUCE R. BLAZAR

1997 ◽  
Vol 177 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Yoshihiro Watanabe ◽  
Yuichi Aiba ◽  
Yoshimoto Katsura

Sign in / Sign up

Export Citation Format

Share Document