scholarly journals QUANTITATIVE EXPERIMENTS WITH ANTIBODIES TO A SPECIFIC PRECIPITATE. I

1941 ◽  
Vol 73 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Henry P. Treffers ◽  
Michael Heidelberger

1. Rabbits were injected with the washed specific precipitate from Type II antipneumococcus horse serum. Antibody in the resulting antiserum was determined by the quantitative agglutinin method using various specific precipitates as antigens. 2. Suspensions of Types I and II antipneumococcus horse specific precipitates, as well as the specific precipitates derived from Type VIII Pn (anti-C portion), and H. influenzae horse antisera were found to remove the same amount of antibody from the immune rabbit serum. 3. Purified antibody solutions prepared by dissociation methods from Types I and II antipneumococcus horse sera were found to remove the same quantity of antibody as did the homologous specific precipitates. 4. Specific precipitates from anti-crystalline egg albumin and anti-diphtheria horse sera were found to remove only a fraction of the antibody. The reasons for this are discussed. 5. A specific precipitate prepared from pepsin-digested Type I anti-pneumococcus horse serum removed all of the antibody to the homologous antigen from the rabbit anti-precipitate serum, but followed a different quantitative course. 6. From the quantitative course of these reactions and from experiments with specific precipitates from anti-Pn rabbit and pig sera it is concluded that the only antigenic specificity demonstrable for the antibodies investigated was that due to their common origin, and that the groupings responsible for their antibody function constitute either a small part of the total protein molecule or else are non-antigenic.

1941 ◽  
Vol 73 (2) ◽  
pp. 223-242 ◽  
Author(s):  
Hans Smetana ◽  
David Shemin

1. Quantitative precipitin studies indicate that progressive photo-oxidation progressively destroys the antigenic function of egg albumin. 2. Quantitative precipitin reactions of antisera (anti-egg albumin rabbit serum and antipneumococcus Type I horse serum) demonstrate that progressive photo-oxidation causes progressive lowering of the potency of the sera. 3. Quantitative precipitin reactions of the photo-oxidized globulin gamma fraction of anti-egg albumin rabbit serum and of Felton solution of antipneumococcus Type I horse serum show that these specific antibody fractions behave similarly to antibodies in whole sera. 4. Egg albumin whose precipitin reaction is destroyed by photo-oxidation no longer causes anaphylaxis in guinea pigs and does not produce precipitins in rabbits. 5. Chemical studies of progressively photo-oxidized egg albumin show a progressive destruction of tryptophane and histidine while tyrosine remains intact and cystine is reversibly oxidized. Sulfhydryl groups can no longer be demonstrated in photo-oxidized egg albumin whose antigenic characteristics are greatly weakened. 6. Similar studies on the globulin gamma fraction of anti-egg albumin rabbit serum and on Felton solution show no diminution of these amino acids in photo-oxidized material whose antigenic properties are destroyed. 7. The non-coagulable nitrogen and the amino nitrogen of egg albumin, antisera, and their specific antibody fractions show but an insignificant increase during photo-oxidation, indicating that the loss of the precipitin reaction is not due to splitting of the respective protein molecules. 8. Electrophoretic studies of egg albumin, antisera, and their specific antibody fractions show that photo-oxidation causes a marked alteration of the pattern of these substrates. 9. Photo-oxidation of proteins causes the formation of aggregates, indicating denaturation. 10. Hematoporphyrin migrates with the albumin fraction of unaltered as well as the photo-oxidized anti-egg albumin rabbit serum and pneumococcus Type I horse serum; in isolated proteins such as egg albumin, globulin gamma, or Felton solution, etc., the dye moves independently of the protein; after progressive photo-oxidation Hp becomes progressively fixed to the protein. Eosin behaves similarly to hematoporphyrin.


1943 ◽  
Vol 77 (2) ◽  
pp. 173-183 ◽  
Author(s):  
Alvin F. Coburn ◽  
Eleanor M. Kapp

1. Sodium salicylate modifies the precipitation of normal rabbit serum protein by sodium tungstate, and partially inhibits the precipitation of horse serum euglobulin by rabbit antiserum. Sodium salicylate added to a system containing crystalline egg albumin and its antibody partly prevents the formation of precipitate, the degree of inhibition being related to the concentration of salicylate. 2. Precipitation in the equivalence zone is more readily prevented by salicylate than precipitation in the region of antibody excess, the immune system becoming progressively less sensitive to the action of salicylate as the excess of antibody becomes larger. 3. Formed precipitates were partly dissolved following resuspension in the presence of salicylate. 4. The salicylate effect on immune precipitation is reversible, and appears to be due to inactivation of antibody. 5. Salicylate was more effective in preventing specific precipitation than other anions of a lyotropic series tested.


1949 ◽  
Vol 32 (6) ◽  
pp. 705-724 ◽  
Author(s):  
John H. Northrop ◽  
Walther F. Goebel

1. The immune precipitate formed by antipneumococcus horse serum and the specific polysaccharide is not hydrolyzed by trypsin as is the diphtheria toxin-antitoxin complex, and purified pneumococcus antibody cannot be isolated by the method used for the isolation and crystallization of diphtheria antitoxin. 2. Type I pneumococcus antibody, completely precipitable by Type I polysaccharide, may be obtained from immune horse serum globulin by precipitation of the inert proteins with acid potassium phthalate. 3. The antibody obtained in this way may be fractionated by precipitation with ammonium sulfate into three main parts. One is insoluble in neutral salts but soluble from pH 4.5 to 3.0 and from pH 9.5 to 10.5. This is the largest fraction. A second fraction is soluble in 0.05 to 0.2 saturated ammonium sulfate and the third fraction is soluble in 0.2 saturated ammonium sulfate and precipitated by 0.35 saturated ammonium sulfate. The second fraction can be further separated by precipitation with 0.17 saturated ammonium sulfate to yield a small amount of protein which is soluble in 0.17 saturated ammonium sulfate but insoluble in 0.25 saturated ammonium sulfate. This fraction crystallizes in poorly formed, rounded rosettes. 4. The crystallization does not improve the purity of the antibody and is accompanied by the formation of an insoluble protein as in the case of diphtheria antitoxin. 5. None of the fractions obtained is even approximately homogeneous as determined by solubility measurements. 6. Purified antibody has also been obtained by dissociating the antigen-antibody complex. 7. The protective value of the fractions is quite different; that of the dissociated antibody being the highest and that of the insoluble fraction, the lowest. 8. All the fractions are immunologically specific since they do not precipitate with Type II polysaccharide nor protect against Type II pneumococci. 9. All the fractions give a positive precipitin reaction with antihorse rabbit serum. The dissociated antibody gives the least reaction. 10. Comparison of the various fractions, either by their solubility in salt solution or through immunological reactions, indicates that there are a large number of proteins present in immune horse serum, all of which precipitate with the specific polysaccharide but which have very different protective values, different reactions with antihorse rabbit serum, and different solubility in salt solutions.


1937 ◽  
Vol 65 (3) ◽  
pp. 393-414 ◽  
Author(s):  
Michael Heidelberger ◽  
Kai O. Pedersen

1. Highly purified rabbit Type III pneumococcus anticarbohydrate proved to be homogeneous in the ultracentrifuge and its sedimentation constant, 7.0·10–13, did not differ from that of the principal component of normal rabbit globulin or of immune rabbit globulin containing up to 50 per cent of anti-egg albumin. The molecular weight of antibody in the rabbit is therefore probably very close to that of the principal normal globulin component, namely, 150,000. 2. Highly purified horse Type I pneumococcus anticarbohydrate, on the other hand, was only homogeneous in the ultracentrifuge when prepared from sera stored without preservative. Its sedimentation constant, 18.4·10–13, coincided with that of the principal globulin component in most of the Felton solutions and purified antibody solutions studied. The molecular weight of pneumococcus anticarbohydrate in the horse is probably three to four times that of the principal normal globulin component. 3. The significance of the differences between pneumococcus anticarbohydrate formed in the rabbit and in the horse is discussed. 4. Results are given of ultracentrifuge studies on the molecular species in solutions of egg albumin-anti-egg albumin specific precipitates dissolved in excess egg albumin. The implications of the results are discussed.


1938 ◽  
Vol 67 (4) ◽  
pp. 619-641 ◽  
Author(s):  
Rose G. Miller

1. Inflammation retards the absorption of horse serum globulin and crystalline egg albumin from the peritoneal cavity and subcutaneous tissue, but retardation of the absorption of crystalline egg albumin is less than that of globulin, which is less diffusible. 2. Inflammation retards the absorption of the specific polysaccharide of pneumococcus Type I from the peritoneal cavity; inflammation may accelerate, but does not hinder, the absorption of glucose from the peritoneal cavity. 3. Inflammation retards the spread of trypan blue in the skin, but accelerates absorption from the skin of the more diffusible dye, brom phenol blue. 4. Phenol red is excreted in the urine with equal rapidity after injection into normal and into inflamed subcutaneous tissue or into normal and into inflamed peritoneal cavities. Direct extractions of phenol red from inflamed subcutaneous sites indicate that inflammation accelerates the absorption of the dye from these areas. 5. Inflammation retards the absorption of the indiffusible proteins, carbohydrates and dyes; it tends to accelerate the absorption of the diffusible carbohydrates and dyes.


1936 ◽  
Vol 64 (3) ◽  
pp. 377-383 ◽  
Author(s):  
Kenneth Goodner ◽  
Frank L. Horsfall

1. The addition of small amounts of cholesterol and of cephalin reduces markedly the protective action of antipneumococcus horse serum. 2. These lipids do not affect the protective action of antipneumococcus rabbit serum. 3. These findings may be explained (a)by the selective adsorption of lipid on the antigen-antibody complex, and (b) by certain lipid antagonisms. 4. The failure of large amounts of immune horse serum to protect mice against pneumococcus infection is explicable on the basis of selective participation of lipids dependent upon the species from which the antibody is derived. 5. The lipids modify the results of protection tests only through participation in the process of specific sensitization.


1929 ◽  
Vol 49 (2) ◽  
pp. 183-193 ◽  
Author(s):  
John Y. Sugg ◽  
James M. Neill

The paper reports evidence of an immunological relationship between one variety of Saccharomyces ceremsise and the Type II variety of Diplococcus pneumonix (Pneumococcus). The most convincing data consisted of the reactions of the Type II bacteria with potent antiyeast serum which agglutinated, and protected mice against these pneumococci as well as the average antiserum obtained by immunization of rabbits with Type II bacteria themselves. The reactivity of the antiyeast serum is strictly specific to the Type II variety of Pneumococcus in the sense that it is entirely devoid of antibodies reactive with Type I or III. The results of absorption experiments with both the antiyeast (rabbit) serum and the anti-Type II (horse) serum were the same as those usually obtained in analogous experiments with immunologically related, but not identical, kinds of bacteria. The immunological relationship of the yeast and the Type II pneumococcus is apparently based upon S-anti-S reactions. It represents an example of heterogenetic specificity which is of particular interest because of the wide genetic separation of the pathogenic schizomycete and the saprophytic ascomycete. Data on the individual irregularity in the yeast-agglutinating capacity of serum from non-immunized or "normal" rabbits are presented as experimental facts.


1935 ◽  
Vol 62 (4) ◽  
pp. 485-503 ◽  
Author(s):  
Frank L. Horsfall ◽  
Kenneth Goodner

It has been demonstrated that the removal of lipoids from Type I antipneumococcus horse serum causes a loss of the visible phenomena of type specific agglutination and precipitation, and in the case of rabbit serum a marked reduction in these properties. Initial activity of the type specific antibody can be restored to extracted immune horse serum by the addition of lecithin, and to rabbit serum by the addition of cephalin. The significance of these observations in respect to the relation of phospholipins to the type specific reactions of antipneumococcus serum is discussed.


1936 ◽  
Vol 64 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Kenneth Goodner ◽  
Frank L. Horsfall

1. Complement is not fixed by immune aggregates resulting from the interaction of pneumococcus capsular polysaccharide and type-specific immune horse serum, although under proper conditions the substitution of immune rabbit serum gives positive results. 2. The negative results with immune horse serum are due to some poorly understood property of the specific antibodies rather than to some heterologous inhibitor present in the serum. 3. It has been shown that with immune rabbit serum-polysaccharide combinations, complement fixation is an adsorptive phenomenon conditioned upon the surface exposure of the immune aggregates. 4. A close parallelism to the selective adsorption of phosphatides by these immune aggregates has been pointed out. 5. In those instances in which complement is fixed this phenomenon must be regarded as tertiary and conditioned by (a) union of antigen and antibody, and (b) particulation. 6. The general significance of complement fixation as applied to bacterial polysaccharides has been discussed.


1920 ◽  
Vol 32 (3) ◽  
pp. 283-293 ◽  
Author(s):  
Ida W. Pritchett

1. No demonstrable antiopsonins are formed in rabbits following the intravenous injection of monovalent pneumococcus horse sera, Types I, II, and III. 2. The serum of rabbits injected with immune pneumococcus horse serum, Type I, II, or III, or with normal horse serum, when mixed in the proportion of 1:4 with Type I or Type II pneumococcus horse serum, can greatly augment, in vitro, the opsonization and agglutination of Type I and Type II pneumococci by the homologous immune horse sera. No similar effect is obtained with Type III serum and pneumococci. 3. The increase in opsonization and agglutination is dependent upon (a) specific sensitization of the pneumococci by the homologous immune serum and (b) the presence of the precipitating serum. In the absence of sensitization, as when a heterologous or normal horse serum is employed, opsonization and agglutination do not occur, even though a precipitating mixture is provided. The substitution of normal rabbit serum for the precipitating rabbit serum gives opsonization and agglutination in dilutions slightly higher than are effected with salt solution only, due possibly to the more favorable medium created for the leucocytes by the addition of 25 per cent of whole rabbit serum. 4. Different methods of combining the immune horse serum, precipitating rabbit serum, and pneumococci yield very similar results, preliminary sensitization of the bacteria before precipitation, or precipitation in the rabbit-horse serum mixture before the addition of the pneumococci for sensitization causing little if any difference in result from that obtained when immune horse serum, precipitating rabbit serum, and pneumococci are all mixed and incubated together. 5. This increased opsonization in the test-tube does not seem to be paralleled by increased protective power, or at any rate such protection is not readily demonstrated.


Sign in / Sign up

Export Citation Format

Share Document