scholarly journals STUDIES ON IMMUNOLOGICAL RELATIONSHIPS AMONG THE PNEUMOCOCCI

1929 ◽  
Vol 49 (2) ◽  
pp. 183-193 ◽  
Author(s):  
John Y. Sugg ◽  
James M. Neill

The paper reports evidence of an immunological relationship between one variety of Saccharomyces ceremsise and the Type II variety of Diplococcus pneumonix (Pneumococcus). The most convincing data consisted of the reactions of the Type II bacteria with potent antiyeast serum which agglutinated, and protected mice against these pneumococci as well as the average antiserum obtained by immunization of rabbits with Type II bacteria themselves. The reactivity of the antiyeast serum is strictly specific to the Type II variety of Pneumococcus in the sense that it is entirely devoid of antibodies reactive with Type I or III. The results of absorption experiments with both the antiyeast (rabbit) serum and the anti-Type II (horse) serum were the same as those usually obtained in analogous experiments with immunologically related, but not identical, kinds of bacteria. The immunological relationship of the yeast and the Type II pneumococcus is apparently based upon S-anti-S reactions. It represents an example of heterogenetic specificity which is of particular interest because of the wide genetic separation of the pathogenic schizomycete and the saprophytic ascomycete. Data on the individual irregularity in the yeast-agglutinating capacity of serum from non-immunized or "normal" rabbits are presented as experimental facts.

1949 ◽  
Vol 32 (6) ◽  
pp. 705-724 ◽  
Author(s):  
John H. Northrop ◽  
Walther F. Goebel

1. The immune precipitate formed by antipneumococcus horse serum and the specific polysaccharide is not hydrolyzed by trypsin as is the diphtheria toxin-antitoxin complex, and purified pneumococcus antibody cannot be isolated by the method used for the isolation and crystallization of diphtheria antitoxin. 2. Type I pneumococcus antibody, completely precipitable by Type I polysaccharide, may be obtained from immune horse serum globulin by precipitation of the inert proteins with acid potassium phthalate. 3. The antibody obtained in this way may be fractionated by precipitation with ammonium sulfate into three main parts. One is insoluble in neutral salts but soluble from pH 4.5 to 3.0 and from pH 9.5 to 10.5. This is the largest fraction. A second fraction is soluble in 0.05 to 0.2 saturated ammonium sulfate and the third fraction is soluble in 0.2 saturated ammonium sulfate and precipitated by 0.35 saturated ammonium sulfate. The second fraction can be further separated by precipitation with 0.17 saturated ammonium sulfate to yield a small amount of protein which is soluble in 0.17 saturated ammonium sulfate but insoluble in 0.25 saturated ammonium sulfate. This fraction crystallizes in poorly formed, rounded rosettes. 4. The crystallization does not improve the purity of the antibody and is accompanied by the formation of an insoluble protein as in the case of diphtheria antitoxin. 5. None of the fractions obtained is even approximately homogeneous as determined by solubility measurements. 6. Purified antibody has also been obtained by dissociating the antigen-antibody complex. 7. The protective value of the fractions is quite different; that of the dissociated antibody being the highest and that of the insoluble fraction, the lowest. 8. All the fractions are immunologically specific since they do not precipitate with Type II polysaccharide nor protect against Type II pneumococci. 9. All the fractions give a positive precipitin reaction with antihorse rabbit serum. The dissociated antibody gives the least reaction. 10. Comparison of the various fractions, either by their solubility in salt solution or through immunological reactions, indicates that there are a large number of proteins present in immune horse serum, all of which precipitate with the specific polysaccharide but which have very different protective values, different reactions with antihorse rabbit serum, and different solubility in salt solutions.


1920 ◽  
Vol 32 (3) ◽  
pp. 283-293 ◽  
Author(s):  
Ida W. Pritchett

1. No demonstrable antiopsonins are formed in rabbits following the intravenous injection of monovalent pneumococcus horse sera, Types I, II, and III. 2. The serum of rabbits injected with immune pneumococcus horse serum, Type I, II, or III, or with normal horse serum, when mixed in the proportion of 1:4 with Type I or Type II pneumococcus horse serum, can greatly augment, in vitro, the opsonization and agglutination of Type I and Type II pneumococci by the homologous immune horse sera. No similar effect is obtained with Type III serum and pneumococci. 3. The increase in opsonization and agglutination is dependent upon (a) specific sensitization of the pneumococci by the homologous immune serum and (b) the presence of the precipitating serum. In the absence of sensitization, as when a heterologous or normal horse serum is employed, opsonization and agglutination do not occur, even though a precipitating mixture is provided. The substitution of normal rabbit serum for the precipitating rabbit serum gives opsonization and agglutination in dilutions slightly higher than are effected with salt solution only, due possibly to the more favorable medium created for the leucocytes by the addition of 25 per cent of whole rabbit serum. 4. Different methods of combining the immune horse serum, precipitating rabbit serum, and pneumococci yield very similar results, preliminary sensitization of the bacteria before precipitation, or precipitation in the rabbit-horse serum mixture before the addition of the pneumococci for sensitization causing little if any difference in result from that obtained when immune horse serum, precipitating rabbit serum, and pneumococci are all mixed and incubated together. 5. This increased opsonization in the test-tube does not seem to be paralleled by increased protective power, or at any rate such protection is not readily demonstrated.


1992 ◽  
Vol 285 (2) ◽  
pp. 577-583 ◽  
Author(s):  
G Sugumaran ◽  
J E Silbert

The effects of the non-ionic detergent Triton X-100 on 6-sulphation of two species of endogenous nascent proteochondroitin by a chick-embryo cartilage microsomal system was examined. Sulphation of the larger (Type I) species with adenosine 3′-phosphate 5′-phosphosulphate was slightly diminished when Triton X-100 was present, whereas sulphation of the smaller (Type II) species was slightly enhanced. An ordered rather than random pattern of sulphation was obtained for the smaller proteoglycan, but with a considerably lower degree of sulphation than that of the larger proteochondroitin. These differences were consistent with other differences between these two species as described previously. Sulphation of exogenous [14C]chondroitin and exogenous proteo[3H]chondroitin by the microsomal system with Triton X-100 present produced ordered rather than random sulphation patterns. When a 100,000 g supernatant fraction was utilized for sulphation of [14C]chondroitin or proteo[3H]chondroitin, Triton X-100 was not needed, and ordered sulphation was still obtained. When hexasaccharide was used, sulphation of multiple N-acetylgalactosamine residues of the individual hexasaccharides resulted. This was relatively independent of Triton X-100 or the concentration of the hexasaccharide acceptors. With soluble enzyme, sulphation of multiple N-acetylgalactosamine residues on the individual hexasaccharide molecules was even greater, so that tri-sulphated products were found. This suggests that ordered rather than random sulphation of chondroitin with these enzyme preparations is due to enzyme-substrate interaction rather than to membrane organization.


1981 ◽  
Vol 50 (2) ◽  
pp. 272-278 ◽  
Author(s):  
R. W. Brauer ◽  
R. W. Beaver ◽  
H. W. Gillen

Individual convulsion threshold pressures were determined in mice exposed successively to type I and type II convulsions of the high-pressure neurological syndrome (HPNS), as well as in others exposed, in successive compressions, to type I convulsions under diverse conditions of replication of compression rate. Correlation analyses of the results showed the following degrees of correlation of individual convulsion-threshold pressures: type I with type II-negligible (r2 less than equal to 0.2); type I with type I at the same compression rate-closely correlated (r2 greater than or equal to 0.8); type I with type I at a different compression rate-negligible (r2 less than or equal to 0.2). Individual susceptibility to HPNS (type I) convulsions thus is a stable characteristic of individual seizures vary independently of one another. Likewise, the magnitude of the individual compression rate effect varies independently of intrinsic individual susceptibility to type I HPNS seizures. The results support the view that the HPNS is a composite entity, define constraints on personnel selection, and provide a basis for estimating the efficacy of various selection strategies.


2006 ◽  
Vol 30 (4) ◽  
pp. 329-332 ◽  
Author(s):  
Kenshi Maki ◽  
Yasuhiro Sorada ◽  
Toshihiro Ansai ◽  
Takahiro Nishioka ◽  
Raymond Braham ◽  
...  

A review of the dental literature revealed relatively few studies on the expansion of the mandibular dental arch. The present study attempted expansion of the mandibular arch using a Bihelix appliance. The subjects were 16 children, exhibiting crowding, age ranges from 7 to 11 years. The mandible was expanded 2.0 mm every 3 months. Significant expansion, not only of the individual tooth inter-arch dimensions but also of the overall arch length, was obtained during the period of incisor tooth replacement. The mode of expansion was classified as follows: Type I, those, which showed no effect on the apical base; Type II, those which showed no consistency of the measurement lines. In this study, 6 of16 cases were classified as type I and 10 cases as type II. Expansion was continued over a period of 1.5 to 3 years. We concluded that considerable lateral expansion of the mandibular arch is possible using the Bihelix appliance. It is suggested that this might contribute greatly to non-extraction orthodontic treatment. Further studies are recommended.


1941 ◽  
Vol 73 (2) ◽  
pp. 223-242 ◽  
Author(s):  
Hans Smetana ◽  
David Shemin

1. Quantitative precipitin studies indicate that progressive photo-oxidation progressively destroys the antigenic function of egg albumin. 2. Quantitative precipitin reactions of antisera (anti-egg albumin rabbit serum and antipneumococcus Type I horse serum) demonstrate that progressive photo-oxidation causes progressive lowering of the potency of the sera. 3. Quantitative precipitin reactions of the photo-oxidized globulin gamma fraction of anti-egg albumin rabbit serum and of Felton solution of antipneumococcus Type I horse serum show that these specific antibody fractions behave similarly to antibodies in whole sera. 4. Egg albumin whose precipitin reaction is destroyed by photo-oxidation no longer causes anaphylaxis in guinea pigs and does not produce precipitins in rabbits. 5. Chemical studies of progressively photo-oxidized egg albumin show a progressive destruction of tryptophane and histidine while tyrosine remains intact and cystine is reversibly oxidized. Sulfhydryl groups can no longer be demonstrated in photo-oxidized egg albumin whose antigenic characteristics are greatly weakened. 6. Similar studies on the globulin gamma fraction of anti-egg albumin rabbit serum and on Felton solution show no diminution of these amino acids in photo-oxidized material whose antigenic properties are destroyed. 7. The non-coagulable nitrogen and the amino nitrogen of egg albumin, antisera, and their specific antibody fractions show but an insignificant increase during photo-oxidation, indicating that the loss of the precipitin reaction is not due to splitting of the respective protein molecules. 8. Electrophoretic studies of egg albumin, antisera, and their specific antibody fractions show that photo-oxidation causes a marked alteration of the pattern of these substrates. 9. Photo-oxidation of proteins causes the formation of aggregates, indicating denaturation. 10. Hematoporphyrin migrates with the albumin fraction of unaltered as well as the photo-oxidized anti-egg albumin rabbit serum and pneumococcus Type I horse serum; in isolated proteins such as egg albumin, globulin gamma, or Felton solution, etc., the dye moves independently of the protein; after progressive photo-oxidation Hp becomes progressively fixed to the protein. Eosin behaves similarly to hematoporphyrin.


1935 ◽  
Vol 61 (4) ◽  
pp. 545-558 ◽  
Author(s):  
Geoffrey Rake

The investigation of this isolated epidemic of meningococcus meningitis at a C.C.C. camp gave an opportunity to examine the carrier state in contacts carrying what were presumably virulent epidemic strains of organisms. With the aid of Miller's technique for the enhancement of the demonstrable virulence of meningococci for mice, it proved possible to test the virulence of the carrier strains from Camp Rusk. These results were consistent despite the interval of from 3 to 4 weeks which intervened between the isolation of the strains and the virulence titrations. Type I strains were found to have a high virulence, while the virulence of Type II strains was moderately high but definitely less than that of the Type I, and atypical strains and strains of N. catarrhalis isolated from carriers showed a very low virulence. The question of the precise nature of the carrier state was investigated. No evidence has been obtained yet as to the existence of a relationship between pharyngitis, coryza or upper respiratory disease and the presence and degree of the carrier state. This is unlike the situation with regard to pneumococcus carriers. On the other hand, it has proved possible to demonstrate reactions within the body to the meningococci in the nasopharynx, consisting of the formation of agglutinins and protective antibodies in the blood serum. 32.3 per cent of Type I and 60 per cent of Type II carrier sera showed moderate or good agglutinins for homologous organisms and 80 per cent of Type I and 40 per cent of Type II sera showed moderate or good protective antibodies against virulent homologous strains. No idea could be obtained as to the relationship of the presence or absence and the degree of serological reaction and the duration of the carrier state.


1941 ◽  
Vol 73 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Henry P. Treffers ◽  
Michael Heidelberger

1. Rabbits were injected with the washed specific precipitate from Type II antipneumococcus horse serum. Antibody in the resulting antiserum was determined by the quantitative agglutinin method using various specific precipitates as antigens. 2. Suspensions of Types I and II antipneumococcus horse specific precipitates, as well as the specific precipitates derived from Type VIII Pn (anti-C portion), and H. influenzae horse antisera were found to remove the same amount of antibody from the immune rabbit serum. 3. Purified antibody solutions prepared by dissociation methods from Types I and II antipneumococcus horse sera were found to remove the same quantity of antibody as did the homologous specific precipitates. 4. Specific precipitates from anti-crystalline egg albumin and anti-diphtheria horse sera were found to remove only a fraction of the antibody. The reasons for this are discussed. 5. A specific precipitate prepared from pepsin-digested Type I anti-pneumococcus horse serum removed all of the antibody to the homologous antigen from the rabbit anti-precipitate serum, but followed a different quantitative course. 6. From the quantitative course of these reactions and from experiments with specific precipitates from anti-Pn rabbit and pig sera it is concluded that the only antigenic specificity demonstrable for the antibodies investigated was that due to their common origin, and that the groupings responsible for their antibody function constitute either a small part of the total protein molecule or else are non-antigenic.


1936 ◽  
Vol 64 (3) ◽  
pp. 377-383 ◽  
Author(s):  
Kenneth Goodner ◽  
Frank L. Horsfall

1. The addition of small amounts of cholesterol and of cephalin reduces markedly the protective action of antipneumococcus horse serum. 2. These lipids do not affect the protective action of antipneumococcus rabbit serum. 3. These findings may be explained (a)by the selective adsorption of lipid on the antigen-antibody complex, and (b) by certain lipid antagonisms. 4. The failure of large amounts of immune horse serum to protect mice against pneumococcus infection is explicable on the basis of selective participation of lipids dependent upon the species from which the antibody is derived. 5. The lipids modify the results of protection tests only through participation in the process of specific sensitization.


1919 ◽  
Vol 30 (2) ◽  
pp. 123-146 ◽  
Author(s):  
Mildred C. Clough

In this paper are reported the results of a study of nine strains of pneumococci agglutinating with antipneumococcus sera of all three types (Nos. I, II, and III). Seven of the strains were the cause of serious or fatal infections in human beings. Morphologically they were typical pneumococci with characteristic growth on ordinary media. Most of the strains were soluble in bile, fermented inulin, and caused no precipitation on glucose ascitic fluid agar. Two of the strains, however, resembled streptococci in these three cultural characteristics, but have been regarded as pneumococci on account of their serological reactions. Variations in the cultural reactions occurred with several strains while they were under observation. The virulence of the strains varied greatly, some strains being almost non-pathogenic, and others killing mice in doses of 0.000001 cc. of a 24 hour broth culture. Antipneumococcus Sera I, II, and III agglutinated all the strains in fairly high dilution (1:8 to 1:64 or higher), while normal horse serum caused no agglutination. Antipneumococcus Sera I, II, and III stimulated active phagocytosis of all the strains, while no phagocytosis occurred in control preparations with normal horse serum. These strains elaborated a soluble substance in the body of inoculated mice which caused the formation of a precipitate when the peritoneal washings, cleared by centrifugalization, were added to the antipneumococcus sera of all three types. Antipneumococcus Sera I, II, and III protected mice equally well against 1,000 to 10,000 times the minimal lethal dose of the two strains with which protection tests could be carried out. Absorption of serum of Types I and II with the homologous pneumococcus removed the agglutinins and the bacteriotropins for all these strains. Absorption of these sera with Strains T and N removed the agglutinins and the bacteriotropins for the homologous strain only, and not for typical members of Type I or II, or for the other atypically agglutinable strains reported in this paper. The agglutinins concerned in the agglutination of these peculiar strains are therefore minor agglutinins. As shown not only by agglutination tests, but also by protection tests and agglutinin absorption tests, these organisms bear the same relation to Types I, II, and III, as do atypical Type II strains to Type II. Immune sera were prepared with these strains, and each strain was tested with all the immune sera by means of phagocytic and agglutinative reactions. In general, the strains were found to be serologically distinct, though some interrelationships existed between Strains V and R, and between Strains H, F, and N. These sera had no activity towards strains belonging to Type I or II, or atypical Type II. A mutation occurred in one of the strains, B, while it was under observation. On isolation this strain had the cultural reactions of a typical pneumococcus, and had the phagocytic and agglutinative reactions of an atypical Type II. After 6 months cultivation on blood agar its serological reactions changed, and it became actively phagocyted and agglutinated in antipneumococcus sera of Types I, II, and III. Its cultural characteristics also changed, and it became bile-insoluble, did not ferment inulin, and caused precipitation in glucose ascitic fluid agar. At this time it caused an intense green discoloration at the base of the blood agar slants around the water of condensation. By repeated animal passages this strain was three times made to revert abruptly to its original form (atypical Type IIa), both in cultural and serological reactions. An immune serum was prepared to each form of the strain, and each serum acted strongly on the homologous form, but was without action on the heterologous form of the strain. This mutation suggests that these pneumococci reacting with all three types of antipneumococcus sera may represent primitive, relatively undifferentiated forms from which the fixed types may have arisen.


Sign in / Sign up

Export Citation Format

Share Document