scholarly journals Role of an S4-S5 linker in sodium channel inactivation probed by mutagenesis and a peptide blocker.

1996 ◽  
Vol 108 (2) ◽  
pp. 89-104 ◽  
Author(s):  
L Tang ◽  
R G Kallen ◽  
R Horn

A pair of conserved methionine residues, located on the cytoplasmic linker between segments S4 and S5 in the fourth domain of human heart Na channels (hH1), plays a role in the kinetics and voltage dependence of inactivation. Substitution of these residues by either glutamine (M1651M1652/QQ) or alanine (MM/AA) increases the inactivation time constant (tau) at depolarized voltages, shifts steady-state inactivation (h infinity) in a depolarized direction, and decreases the time constant for recovery from inactivation. The data indicate that the mutations affect the rate constants for both binding and unbinding of a hypothetical inactivation particle from its binding site. Cytoplasmic application of the pentapeptide KIFMK in Na channels mutated to remove inactivation produces current decays resembling inactivation (Eaholtz, G., T. Scheuer, and W.A. Catterall. 1994. Neuron. 12: 1041-1048.). KIFMK produces a concentration-dependent, voltage-independent increase in the decay rate of MM/QQ and MM/AA currents at positive membrane potentials (Ki approximately 30 microM), while producing only a small increase in the decay rate of wild-type currents at a concentration of 200 microM. Although MM/QQ inactivates approximately 2.5-fold faster than MM/AA in the absence of peptide, the estimated rate constants for peptide block and unblock do not differ in these mutants. External Na+ ions antagonize the block by cytoplasmic KIFMK of MM/AA channels, but not the inactivation kinetics of this mutant in the absence of peptide. The effect of external [Na+] is interpreted as a voltage-dependent knock-off mechanism. The data provide evidence that KIFMK can only block channels when they are open and that peptide block does not mimic the inactivation process.

1992 ◽  
Vol 99 (1) ◽  
pp. 1-20 ◽  
Author(s):  
G K Wang ◽  
S Y Wang

Batrachotoxin (BTX)-modified Na+ currents were characterized in GH3 cells with a reversed Na+ gradient under whole-cell voltage clamp conditions. BTX shifts the threshold of Na+ channel activation by approximately 40 mV in the hyperpolarizing direction and nearly eliminates the declining phase of Na+ currents at all voltages, suggesting that Na+ channel inactivation is removed. Paradoxically, the steady-state inactivation (h infinity) of BTX-modified Na+ channels as determined by a two-pulse protocol shows that inactivation is still present and occurs maximally near -70 mV. About 45% of BTX-modified Na+ channels are inactivated at this voltage. The development of inactivation follows a sum of two exponential functions with tau d(fast) = 10 ms and tau d(slow) = 125 ms at -70 mV. Recovery from inactivation can be achieved after hyperpolarizing the membrane to voltages more negative than -120 mV. The time course of recovery is best described by a sum of two exponentials with tau r(fast) = 6.0 ms and tau r(slow) = 240 ms at -170 mV. After reaching a minimum at -70 mV, the h infinity curve of BTX-modified Na+ channels turns upward to reach a constant plateau value of approximately 0.9 at voltages above 0 mV. Evidently, the inactivated, BTX-modified Na+ channels can be forced open at more positive potentials. The reopening kinetics of the inactivated channels follows a single exponential with a time constant of 160 ms at +50 mV. Both chloramine-T (at 0.5 mM) and alpha-scorpion toxin (at 200 nM) diminish the inactivation of BTX-modified Na+ channels. In contrast, benzocaine at 1 mM drastically enhances the inactivation of BTX-modified Na+ channels. The h infinity curve reaches minimum of less than 0.1 at -70 mV, indicating that benzocaine binds preferentially with inactivated, BTX-modified Na+ channels. Together, these results imply that BTX-modified Na+ channels are governed by an inactivation process.


2007 ◽  
Vol 293 (2) ◽  
pp. C783-C789 ◽  
Author(s):  
Christian Rosker ◽  
Birgit Lohberger ◽  
Doris Hofer ◽  
Bibiane Steinecker ◽  
Stefan Quasthoff ◽  
...  

The blocking efficacy of 4,9-anhydro-TTX (4,9-ah-TTX) and TTX on several isoforms of voltage-dependent sodium channels, expressed in Xenopus laevis oocytes, was tested (Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6, Nav1.7, and Nav1.8). Generally, TTX was 40–231 times more effective, when compared with 4,9-ah-TTX, on a given isoform. An exception was Nav1.6, where 4,9-ah-TTX in nanomole per liter concentrations sufficed to result in substantial block, indicating that 4,9-ah-TTX acts specifically at this peculiar isoform. The IC50 values for TTX/4,9-ah-TTX were as follows (in nmol/l): 7.8 ± 1.3/1,260 ± 121 (Nav1.2), 2.8 ± 2.3/341 ± 36 (Nav1.3), 4.5 ± 1.0/988 ± 62 (Nav1.4), 1,970 ± 565/78,500 ± 11,600 (Nav1.5), 3.8 ± 1.5/7.8 ± 2.3 (Nav1.6), 5.5 ± 1.4/1,270 ± 251 (Nav1.7), and 1,330 ± 459/>30,000 (Nav1.8). Analysis of approximal half-maximal doses of both compounds revealed minor effects on voltage-dependent activation only, whereas steady-state inactivation was shifted to more negative potentials by both TTX and 4,9-ah-TTX in the case of the Nav1.6 subunit, but not in the case of other TTX-sensitive ones. TTX shifted steady-state inactivation also to more negative potentials in case of the TTX-insensitive Nav1.5 subunit, where it also exerted profound effects on the time course of recovery from inactivation. Isoform-specific interaction of toxins with ion channels is frequently observed in the case of proteinaceous toxins. Although the sensitivity of Nav1.1 to 4,9-ah-TTX is not known, here we report evidence on a highly isoform-specific TTX analog that may well turn out to be an invaluable tool in research for the identification of Nav1.6-mediated function, but also for therapeutic intervention.


1996 ◽  
Vol 271 (2) ◽  
pp. H498-H506 ◽  
Author(s):  
M. Chahine ◽  
I. Deschene ◽  
L. Q. Chen ◽  
R. G. Kallen

The alpha-subunit encoding for voltage-gated sodium channels rSkM1 (rat skeletal muscle subtype 1) and hH1 (human heart subtype 1) has been cloned and expressed by various groups under various conditions in Xenopus oocytes and the tsA201 (HEK 293) mammalian cell line derived from human embryonic kidney cells. In this study, we have expressed hH1 and rSkM1 in tsA201 cells for comparison under the same conditions using patch-clamp methods. Our results show significant differences in the current-voltage (I-V) relationship, kinetics of current decay, voltage dependence of steady-state inactivation, and the time constant for recovery from inactivation. We studied several rSkM1/hH1 chimeric sodium channels to identify the structural regions responsible for the different biophysical behavior of the two channel subtypes. Exchanging the interdomain (ID3-4) loops, thought to contain the inactivation particle, between rSkM1 and hH1 had no effect on the electrophysiological behaviors, including inactivation, indicating that the differences in channel subtype characteristics are determined by parts of the channel other than the ID3-4 segment. The data on a chimeric channel in which D1 and D4 are derived from hH1 while D2 and D3 and the ID1-2, ID2-3, and ID3-4 loops are from rSkM1 show that D1 and/or D4 seem to be responsible for the slower kinetics of inactivation of hH1 while D2 and/or D3 appear to contain the determinants for the differences in the I-V relationship, steady-state inactivation (h infinity) curve, and the kinetics of the recovery from inactivation.


2002 ◽  
Vol 88 (6) ◽  
pp. 3386-3397 ◽  
Author(s):  
Dan Rokni ◽  
Binyamin Hochner

The octopus arm provides a unique model for neuromuscular systems of flexible appendages. We previously reported the electrical compactness of the arm muscle cells and their rich excitable properties ranging from fast oscillations to overshooting action potentials. Here we characterize the voltage-activated ionic currents in the muscle cell membrane. We found three depolarization-activated ionic currents: 1) a high-voltage-activated L-type Ca2+ current, which began activating at approximately −35 mV, was eliminated when Ca2+ was substituted by Mg2+, was blocked by nifedipine, and showed Ca2+-dependent inactivation. This current had very rapid activation kinetics (peaked within milliseconds) and slow inactivation kinetics (τ in the order of 50 ms). 2) A delayed rectifier K+ current that was totally blocked by 10 mM TEA and partially blocked by 10 mM 4-aminopyridine (4AP). This current exhibited relatively slow activation kinetics (τ in the order of 15 ms) and inactivated only partially with a time constant of ∼150 ms. And 3) a transient A-type K+ current that was totally blocked by 10 mM 4AP and was partially blocked by 10 mM TEA. This current exhibited very fast activation kinetics (peaked within milliseconds) and inactivated with a time constant in the order of 60 ms. Inactivation of the A-type current was almost complete at −40 mV. No voltage-dependent Na+ current was found in these cells. The octopus arm muscle cells generate fast (∼3 ms) overshooting spikes in physiological conditions that are carried by a slowly inactivating L-type Ca2+ current.


1999 ◽  
Vol 113 (2) ◽  
pp. 333-346 ◽  
Author(s):  
G. Richard Benzinger ◽  
Gayle S. Tonkovich ◽  
Dorothy A. Hanck

Site-3 toxins isolated from several species of scorpion and sea anemone bind to voltage-gated Na channels and prolong the time course of INa by interfering with inactivation with little or no effect on activation, effects that have similarities to those produced by genetic diseases in skeletal muscle (myotonias and periodic paralysis) and heart (long QT syndrome). Some published reports have also reported the presence of a noninactivating persistent current in site-3 toxin-treated cells. We have used the high affinity site-3 toxin Anthopleurin B to study the kinetics of this current and to evaluate kinetic differences between cardiac (in RT4-B8 cells) and neuronal (in N1E-115 cells) Na channels. By reverse transcription–PCR from N1E-115 cell RNA multiple Na channel transcripts were detected; most often isolated were sequences homologous to rBrII, although at low frequency sequences homologous to rPN1 and rBrIII were also detected. Toxin treatment induced a voltage-dependent plateau current in both isoforms for which the relative amplitude (plateau current/peak current) approached a constant value with depolarization, although the magnitude was much greater for neuronal (17%) than cardiac (5%) INa. Cell-attached patch recordings revealed distinct quantitative differences in open times and burst durations between isoforms, but for both isoforms the plateau current comprised discrete bursts separated by quiescent periods, consistent with toxin induction of an increase in the rate of recovery from inactivation rather than a modal failure of inactivation. In accord with this hypothesis, toxin increased the rate of whole-cell recovery at all tested voltages. Moreover, experimental data support a model whereby recovery at negative voltages is augmented through closed states rather than through the open state. We conclude that site-3 toxins produce qualitatively similar effects in cardiac and neuronal channels and discuss implications for channel kinetics.


2004 ◽  
Vol 286 (4) ◽  
pp. G573-G579 ◽  
Author(s):  
K. Dang ◽  
K. Bielefeldt ◽  
G. F. Gebhart

Voltage-dependent potassium currents are important contributors to neuron excitability and thus also to hypersensitivity after tissue insult. We hypothesized that gastric ulcers would alter K+ current properties in primary sensory neurons. The rat stomach was surgically exposed, and a retrograde tracer (1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine methanesulfonate) was injected into multiple sites in the stomach wall. Inflammation and ulcers were produced by 10 injections of 20% acetic acid (HAc) in the gastric wall. Saline (Sal) injections served as control. Nodose or T9–10 dorsal root ganglia (DRG) cells were harvested and cultured 7 days later to record whole cell K+ currents. Gastric sensory neurons expressed transient and sustained outward currents. Gastric inflammation significantly decreased the A-type K+ current density in DRG and nodose neurons (Sal vs. HAc-DRG: 82.9 ± 7.9 vs. 46.5 ± 6.1 pA/pF; nodose: 149.2 ± 10.9 vs. 71.4 ± 11.8 pA/pF), whereas the sustained current was not altered. In addition, there was a significant shift in the steady-state inactivation to more hyperpolarized potentials in nodose neurons (Sal vs. HAc: -76.3 ± 1.0 vs. -83.6 ± 2.2 mV) associated with an acceleration of inactivation kinetics. These data suggest that a reduction in K+ currents contributes, in part, to increased neuron excitability that may lead to development of dyspeptic symptoms.


1989 ◽  
Vol 86 (17) ◽  
pp. 6821-6825 ◽  
Author(s):  
J H Ravesloot ◽  
D L Ypey ◽  
T Vrijheid-Lammers ◽  
P J Nijweide

Patch-clamp measurements on freshly isolated embryonic chicken osteoclasts revealed three distinct types of voltage-dependent K+ conductance. The first type of conductance, present in 72% of the cells, activated at membrane potentials less negative than -30 to -20 mV and reached full activation at +40 mV. It activated with a delay, reached a peak value, and then inactivated with a time constant of approximately 1.5 s. Inactivation was complete or almost so. Recovery from inactivation, at -70 mV, had a time constant of roughly 1 s. The conductance could be blocked, at least partly, by 4 mM 4-aminopyridine. The second type of conductance (present in all cells) activated at membrane potentials more negative than -40 to -80 mV and reached full activation at -130 mV. Activation potential and maximal conductance were dependent on the extracellular K+ concentration. Inactivation of the conductance first became apparent at membrane potentials more negative than -100 mV and was a two-exponential process. The conductance could be blocked by external 5 mM Cs+ ions. The third type of conductance (present in all cells) activated at membrane potentials more positive than +30 mV. Generally, the conductance did not inactivate.


2011 ◽  
Vol 300 (3) ◽  
pp. C567-C575 ◽  
Author(s):  
Hee Jae Kim ◽  
Hye Sook Ahn ◽  
Bok Hee Choi ◽  
Sang June Hahn

The effects of genistein, a protein tyrosine kinase (PTK) inhibitor, on voltage-dependent K+ (Kv) 4.3 channel were examined using the whole cell patch-clamp techniques. Genistein inhibited Kv4.3 in a reversible, concentration-dependent manner with an IC50 of 124.78 μM. Other PTK inhibitors (tyrphostin 23, tyrphostin 25, lavendustin A) had no effect on genistein-induced inhibition of Kv4.3. Orthovanadate, an inhibitor of protein phosphatases, did not reverse the inhibition of Kv4.3 by genistein. We also tested the effects of two inactive structural analogs: genistin and daidzein. Whereas Kv4.3 was unaffected by genistin, daidzein inhibited Kv4.3, albeit with a lower potency. Genistein did not affect the activation and inactivation kinetics of Kv4.3. Genistein-induced inhibition of Kv4.3 was voltage dependent with a steep increase over the channel opening voltage range. In the full-activation voltage range positive to +20 mV, no voltage-dependent inhibition was found. Genistein had no significant effect on steady-state activation, but shifted the voltage dependence of the steady-state inactivation of Kv4.3 in the hyperpolarizing direction in a concentration-dependent manner. The Ki for the interaction between genistein and the inactivated state of Kv4.3, which was estimated from the concentration-dependent shift in the steady-state inactivation curve, was 1.17 μM. Under control conditions, closed-state inactivation was fitted to a single exponential function, and genistein accelerated closed-state inactivation. Genistein induced a weak use-dependent inhibition. These results suggest that genistein directly inhibits Kv4.3 by interacting with the closed-inactivated state of Kv4.3 channels. This effect is not mediated via inhibition of the PTK activity, because other types of PTK inhibitors could not prevent the inhibitory action of genistein.


1993 ◽  
Vol 70 (1) ◽  
pp. 51-63 ◽  
Author(s):  
R. C. Foehring ◽  
D. J. Surmeier

1. We describe three outward K+ current components in acutely dissociated neurons from rat sensorimotor cortex on the basis of inactivation kinetics and voltage dependence. 2. The fast A current (IAf) was completely inactivated at -40 mV and half-inactivated at -52 mV. It activated [time to peak (TTP) 8 ms at -10 mV] and was inactivated (tau inact = 12 ms at -10 mV) rapidly. Recovery from inactivation had a time constant of approximately 80 ms at -100 mV. It was insensitive to tetraethyl ammonium (TEA) and dendrotoxin but was blocked by 4-aminopyridine (4-AP, IC50 = 1 mM). 3. The slowly inactivating current (IKS) was the largest current seen in acutely dissociated adult neurons. It was completely inactivated at -40 mV, half-inactivated at -98 mV, and was kinetically slower (TTP = 130 ms at -10 mV; tau inact = 293 ms at -10 mV) than the fast A current. Deactivation tails were fit with the sum of two exponentials with time constants of 2-10 and 15-40 ms. IKS recovered from inactivation with a time constant of approximately 1,200 ms at -100 mV. 4. There were two components that inactivated with even slower kinetics. The very slowly inactivating current (IKSS) was operationally defined as the current remaining after a 5-s hold at -40 mV. One component inactivated with a time constant of 1,927 ms at -10 mV. The other component showed no inactivation over a 5-s test command, but in 40- to 50-s steps to -10 mV, inactivated with a tau of approximately 20 s. The very slowly inactivating current activated with similar kinetics to IKS (TTP = 121 ms at -10 mV), and two deactivation tails, with kinetics similar to those after the -100 mV prepulse, were observed after holding at -40 mV. 5. Both IKS and IKSS were sensitive to TEA. Seventy-six percent (76%) of IKSS was blocked by 30 mM TEA. Two components to the TEA block were present for IKSS, with IC50s of 88 microM (67% of blockable current) and 7 mM (33%). Seventy percent (70%) of IKS was blocked by 30 mM TEA. For the IKS current, there were also two effective concentrations, with IC50s of 8 microM (21% of blockade current) and 3 mM (79%). 6. IKS and IKSS were also sensitive to 4-AP. Seventy-six percent (76%) of IKSS was blocked by 3-5 mM 4-AP. IKSS exhibited two components of 4-AP block.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document