scholarly journals Collapse of Conductance Is Prevented by a Glutamate Residue Conserved in Voltage-Dependent K+ Channels

2000 ◽  
Vol 116 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Patricia Ortega-Sáenz ◽  
Ricardo Pardal ◽  
Antonio Castellano ◽  
José López-Barneo

Voltage-dependent K+ channel gating is influenced by the permeating ions. Extracellular K+ determines the occupation of sites in the channels where the cation interferes with the motion of the gates. When external [K+] decreases, some K+ channels open too briefly to allow the conduction of measurable current. Given that extracellular K+ is normally low, we have studied if negatively charged amino acids in the extracellular loops of Shaker K+ channels contribute to increase the local [K+]. Surprisingly, neutralization of the charge of most acidic residues has minor effects on gating. However, a glutamate residue (E418) located at the external end of the membrane spanning segment S5 is absolutely required for keeping channels active at the normal external [K+]. E418 is conserved in all families of voltage-dependent K+ channels. Although the channel mutant E418Q has kinetic properties resembling those produced by removal of K+ from the pore, it seems that E418 is not simply concentrating cations near the channel mouth, but has a direct and critical role in gating. Our data suggest that E418 contributes to stabilize the S4 voltage sensor in the depolarized position, thus permitting maintenance of the channel open conformation.

2010 ◽  
Vol 136 (5) ◽  
pp. 569-579 ◽  
Author(s):  
Andrew S. Thomson ◽  
Brad S. Rothberg

Voltage-dependent K+ channels can undergo a gating process known as C-type inactivation, which involves entry into a nonconducting state through conformational changes near the channel’s selectivity filter. C-type inactivation may involve movements of transmembrane voltage sensor domains, although the mechanisms underlying this form of inactivation may be heterogeneous and are often unclear. Here, we report on a form of voltage-dependent inactivation gating observed in MthK, a prokaryotic K+ channel that lacks a canonical voltage sensor and may thus provide a reduced system to inform on mechanism. In single-channel recordings, we observe that Po decreases with depolarization, with a half-maximal voltage of 96 ± 3 mV. This gating is kinetically distinct from blockade by internal Ca2+ or Ba2+, suggesting that it may arise from an intrinsic inactivation mechanism. Inactivation gating was shifted toward more positive voltages by increasing external [K+] (47 mV per 10-fold increase in [K+]), suggesting that K+ binding at the extracellular side of the channel stabilizes the open-conductive state. The open-conductive state was stabilized by other external cations, and selectivity of the stabilizing site followed the sequence: K+ ≈ Rb+ > Cs+ > Na+ > Li+ ≈ NMG+. Selectivity of the stabilizing site is weaker than that of sites that determine permeability of these ions, suggesting that the site may lie toward the external end of the MthK selectivity filter. We could describe MthK gating over a wide range of positive voltages and external [K+] using kinetic schemes in which the open-conductive state is stabilized by K+ binding to a site that is not deep within the electric field, with the voltage dependence of inactivation arising from both voltage-dependent K+ dissociation and transitions between nonconducting (inactivated) states. These results provide a quantitative working hypothesis for voltage-dependent, K+-sensitive inactivation gating, a property that may be common to other K+ channels.


2007 ◽  
Vol 35 (5) ◽  
pp. 1064-1068 ◽  
Author(s):  
D.P. Mohapatra ◽  
K.-S. Park ◽  
J.S. Trimmer

Voltage-gated K+ channels are key regulators of neuronal excitability. The Kv2.1 voltage-gated K+ channel is the major delayed rectifier K+ channel expressed in most central neurons, where it exists as a highly phosphorylated protein. Kv2.1 plays a critical role in homoeostatic regulation of intrinsic neuronal excitability through its activity- and calcineurin-dependent dephosphorylation. Here, we review studies leading to the identification and functional characterization of in vivo Kv2.1 phosphorylation sites, a subset of which contribute to graded modulation of voltage-dependent gating. These findings show that distinct developmental-, cell- and state-specific regulation of phosphorylation at specific sites confers a diversity of functions on Kv2.1 that is critical to its role as a regulator of intrinsic neuronal excitability.


1990 ◽  
Vol 259 (1) ◽  
pp. C56-C68 ◽  
Author(s):  
Y. Segal ◽  
L. Reuss

The apical membrane of Necturus gallbladder epithelium contains a voltage-activated K+ conductance [Ga(V)]. Large-conductance (maxi) K+ channels underlie Ga(V) and account for 17% of the membrane conductance (Ga) under control conditions. We examined the Ba2+, tetraethylammonium (TEA+), and quinine sensitivities of Ga and single maxi K+ channels. Mucosal Ba2+ addition decreased resting Ga in a concentration-dependent manner (65% block at 5 mM) and decreased Ga(V) in a concentration- and voltage-dependent manner. Mucosal TEA+ addition also decreased control Ga (60% reduction at 5 mM). TEA+ block of Ga(V) was more potent and less voltage dependent that Ba2+ block. Maxi K+ channels were blocked by external Ba2+ at millimolar levels and by external TEA+ at submillimolar levels. At 0.3 mM, quinine (mucosal addition) hyperpolarized the cell membranes by 6 mV and reduced the fractional apical membrane resistance by 50%, suggesting activation of an apical membrane K+ conductance. At 1 mM, quinine both activated and blocked K(+)-conductive pathways. Quinine blocked maxi K+ channel currents at submillimolar concentrations. We conclude that 1) Ba2+ and TEA+ block maxi K+ channels and other K+ channels underlying resting Ga; 2) parallels between the Ba2+ and TEA+ sensitivities of Ga(V) and maxi K+ channels support a role for these channels in Ga(V); and 3) quinine has multiple effects on K(+)-conductive pathways in gallbladder epithelium, which are only partially explained by block of apical membrane maxi K+ channels.


1992 ◽  
Vol 100 (3) ◽  
pp. 401-426 ◽  
Author(s):  
M D Ganfornina ◽  
J López-Barneo

Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.


1991 ◽  
Vol 261 (4) ◽  
pp. C583-C590 ◽  
Author(s):  
G. E. Kirsch ◽  
M. Taglialatela ◽  
A. M. Brown

Tetraethylammonium (TEA) has been used recently to probe natural and mutational variants of voltage-dependent K+ channels encoded by cDNA clones. Its usefulness as a probe of channel structure prompted us to examine the molecular mechanism by which TEA blocks single-channel currents in Xenopus oocytes expressing the rat brain K+ channel, RCK2. TEA at the intracellular surface of membrane patches decreased channel open time and increased the duration of closed intervals. Tetrapentylammonium had similar but more potent effects. Extracellular application of TEA caused an apparent reduction of single-channel amplitude. Block was slower at the high-affinity internal site than at the low-affinity external site. Internal TEA selectively blocks open K+ channels, and the voltage dependence of the block indicates that the binding site lies within the membrane electric field at a point 25% of the distance from the cytoplasmic margin. External TEA also interacts with the open channel but is less sensitive to membrane potential. The results indicate that the internal and external TEA binding sites define the inner and outer margins of the aqueous pore.


2009 ◽  
Vol 134 (2) ◽  
pp. 151-164 ◽  
Author(s):  
Juan Ramón Martínez-François ◽  
Yanping Xu ◽  
Zhe Lu

Activity of cyclic nucleotide–gated (CNG) cation channels underlies signal transduction in vertebrate visual receptors. These highly specialized receptor channels open when they bind cyclic GMP (cGMP). Here, we find that certain mutations restricted to the region around the ion selectivity filter render the channels essentially fully voltage gated, in such a manner that the channels remain mostly closed at physiological voltages, even in the presence of saturating concentrations of cGMP. This voltage-dependent gating resembles the selectivity filter-based mechanism seen in KcsA K+ channels, not the S4-based mechanism of voltage-gated K+ channels. Mutations that render CNG channels gated by voltage loosen the attachment of the selectivity filter to its surrounding structure, thereby shifting the channel's gating equilibrium toward closed conformations. Significant pore opening in mutant channels occurs only when positive voltages drive the pore from a low-probability open conformation toward a second open conformation to increase the channels' open probability. Thus, the structure surrounding the selectivity filter has evolved to (nearly completely) suppress the expression of inherent voltage-dependent gating of CNGA1, ensuring that the binding of cGMP by itself suffices to open the channels at physiological voltages.


1994 ◽  
Vol 267 (2) ◽  
pp. C598-C606 ◽  
Author(s):  
D. L. Small ◽  
C. E. Morris

Some stretch-activated (SA) channels challenged with suction jumps exhibit adaptation, a dynamic behavior that can be overlooked because of its mechanical fragility. In previous studies of neuronal SA K channels, we detected no adaptation, but the protocols used were not designed to detect dynamics. Here, we reproduce the adaptation seen by others in Xenopus SA cationic (Cat) channels but show that, with the same protocol, no adaptation occurs with SA K channels. Instead, SA K channels exhibit a different dynamic behavior, delayed activation. Lymnaea SA K channels subjected to pressure jumps responded after a 1- to 4-s delay with a gradual, rather than abrupt, onset of activation. The delay was pressure dependent and was longer for patches from older cultured neurons. Delayed responses were fragile like SA Cat channel adaptation; they disappeared with repeated stimuli. Cytochalasin D decreased the delay and increased the stretch activation of SA K channels. Unlike SA Cat channel adaptation, which occurs only at hyperpolarized potentials, SA K channel delay was not voltage dependent. We note that once SA Cat and SA K channels are "stripped" of their fragile (cytoskeleton-dependent?) dynamics, however, their gating behaviors show little fundamental difference; both are stretch activatable and have a higher open probability at depolarized potentials.


Physiology ◽  
1993 ◽  
Vol 8 (4) ◽  
pp. 175-178 ◽  
Author(s):  
T Takumi

Isk is a small membrane protein with a single membrane-spanning domain and shows a slow voltage-dependent K+ channel activity. Mutational analyses showed that Isk forms an integral part of the K+ channel itself. Two other proteins have similar properties, suggesting a new group of voltage-dependent channels.


1987 ◽  
Vol 90 (2) ◽  
pp. 261-290 ◽  
Author(s):  
P K Wagoner ◽  
G S Oxford

Characteristics of cation permeation through voltage-dependent delayed rectifier K channels in squid giant axons were examined. Axial wire voltage-clamp measurements and internal perfusion were used to determine conductance and permeability properties. These K channels exhibit conductance saturation and decline with increases in symmetrical K+ concentrations to 3 M. They also produce ion- and concentration-dependent current-voltage shapes. K channel permeability ratios obtained with substitutions of internal Rb+ or NH+4 for K+ are higher than for external substitution of these ions. Furthermore, conductance and permeability ratios of NH+4 or Rb+ to K+ are functions of ion concentration. Conductance measurements also reveal the presence of an anomalous mole fraction effect for NH+4, Rb+, or Tl+ to K+. Finally, internal Cs+ blocks these K channels in a voltage-dependent manner, with relief of block by elevations in external K+ but not external NH+4 or Cs+. Energy profiles for K+, NH+4, Rb+, Tl+, and Cs+ incorporating three barriers and two ion-binding sites are fitted to the data. The profiles are asymmetric with respect to the center of the electric field, have different binding energies and electrical positions for each ion, and (for K+) exhibit concentration-dependent barrier positions.


Sign in / Sign up

Export Citation Format

Share Document