scholarly journals Cftr

2001 ◽  
Vol 118 (4) ◽  
pp. 433-446 ◽  
Author(s):  
Xuehong Liu ◽  
Stephen S. Smith ◽  
Fang Sun ◽  
David C. Dawson

Some studies of CFTR imply that channel activation can be explained by an increase in open probability (Po), whereas others suggest that activation involves an increase in the number of CFTR channels (N) in the plasma membrane. Using two-electrode voltage clamp, we tested for changes in N associated with activation of CFTR in Xenopus oocytes using a cysteine-substituted construct (R334C CFTR) that can be modified by externally applied, impermeant thiol reagents like [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET+). Covalent modification of R334C CFTR with MTSET+ doubled the conductance and changed the I-V relation from inward rectifying to linear and was completely reversed by 2-mercaptoethanol (2-ME). Thus, labeled and unlabeled channels could be differentiated by noting the percent decrease in conductance brought about by exposure to 2-ME. When oocytes were briefly (20 s) exposed to MTSET+ before CFTR activation, the subsequently activated conductance was characteristic of labeled R334C CFTR, indicating that the entire pool of CFTR channels activated by cAMP was accessible to MTSET+. The addition of unlabeled, newly synthesized channels to the plasma membrane could be monitored on-line during the time when the rate of addition was most rapid after cRNA injection. The addition of new channels could be detected as early as 5 h after cRNA injection, occurred with a half time of ∼24–48 h, and was disrupted by exposing oocytes to Brefeldin A, whereas activation of R334C CFTR by cAMP occurred with a half time of tens of minutes, and did not appear to involve the addition of new channels to the plasma membrane. These findings demonstrate that in Xenopus oocytes, the major mechanism of CFTR activation by cAMP is by means of an increase in the open probability of CFTR channels.

2001 ◽  
Vol 114 (18) ◽  
pp. 3309-3321 ◽  
Author(s):  
Exing Wang ◽  
Janice G. Pennington ◽  
James R. Goldenring ◽  
Walter Hunziker ◽  
Kenneth W. Dunn

Recent studies showing thorough intermixing of apical and basolateral endosomes have demonstrated that endocytic sorting is critical to maintaining the plasma membrane polarity of epithelial cells. Our studies of living, polarized cells show that disrupting endocytosis with brefeldin-A rapidly destroys the polarity of transferrin receptors in MDCK cells while having no effect on tight junctions. Brefeldin-A treatment induces tubulation of endosomes, but the sequential compartments and transport steps of the transcytotic pathway remain intact. Transferrin is sorted from LDL, but is then missorted from common endosomes to the apical recycling endosome, as identified by its nearly neutral pH, and association with GFP chimeras of Rabs 11a and 25. From the apical recycling endosome, transferrin is then directed to the apical plasma membrane. These data are consistent with a model in which polarized sorting of basolateral membrane proteins occurs via a brefeldin-A-sensitive process of segregation into basolateral recycling vesicles. Although disruption of polar sorting correlates with dissociation of γ-adaptin from endosomes, γ-adaptin does not appear to be specifically involved in sorting into recycling vesicles, as we find it associated with the transcytotic pathway, and particularly to the post-sorting transcytotic apical recycling endosome. Movies available on-line


1998 ◽  
Vol 88 (4) ◽  
pp. 1076-1084 ◽  
Author(s):  
Andrew T. Gray ◽  
Bruce D. Winegar ◽  
Dmitri J. Leonoudakis ◽  
John R. Forsayeth ◽  
Spencer C. Yost

Background Volatile anesthetic agents can activate the S channel, a baseline potassium (K+) channel, of the marine mollusk Aplysia. To investigate whether cloned ion channels with electrophysiologic properties similar to the S channel (potassium selectivity, outward rectification, and activation independent of voltage) also are modulated by volatile anesthetic agents, the authors expressed the cloned yeast ion channel TOK1 (tandem pore domain, outwardly rectifying K+ channel) in Xenopus oocytes and studied its sensitivity to volatile agents. Methods Standard two-electrode voltage and patch clamp recording methods were used to study TOK1 channels expressed in Xenopus oocytes. Results Studies with two-electrode voltage clamp at room temperature showed that halothane, isoflurane, and desflurane increased TOK1 outward currents by 48-65% in barium Frog Ringer's perfusate. The concentrations at which 50% potentiation occurred (EC50 values) were in the range of 768-814 microM (0.016-0.044 atm) and had a rank order of potency in atm in which halothane > isoflurane > desflurane. The potentiation of TOK1 by volatile anesthetic agents was rapid and reversible (onset and offset, 1-20 s). In contrast, the nonanesthetic 1,2-dichlorohexafluorocyclobutane did not potentiate TOK1 currents in concentrations up to five times the MAC value predicted by the Meyer-Overton hypothesis based on oil/gas partition coefficients. Single TOK1 channel currents were recorded from excised outside-out patches. The single channel open probability increased as much as twofold in the presence of isoflurane and rapidly returned to the baseline values on washout. Volatile anesthetic agents did not alter the TOK1 single channel current-voltage (I-V) relationship, however, suggesting that the site of action does not affect the permeation pathway of the channel. Conclusion TOK1 is a potassium channel that is stimulated by volatile anesthetic agents. The concentrations over which potentiation occurred (EC50 values) were higher than those commonly used in clinical practice (approximately twice MAC).


Insects ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 71 ◽  
Author(s):  
Megha Kalsi ◽  
Christopher Gillen ◽  
Peter Piermarini

The yellow fever mosquito Aedes aegypti possesses three genes encoding putative Na+-coupled cation chloride cotransporters (CCCs): aeNKCC1, aeCCC2, and aeCCC3. To date, none of the aeCCCs have been functionally characterized. Here we expressed aeCCC2 heterologously in Xenopus oocytes and measured the uptake of Li+ (a tracer for Na+) and Rb+ (a tracer for K+). Compared to control (H2O-injected) oocytes, the aeCCC2-expressing oocytes exhibited significantly greater uptake of Li+, but not Rb+. However, the uptake of Li+ was neither Cl−-dependent nor inhibited by thiazide, loop diuretics, or amiloride, suggesting unconventional CCC activity. To determine if the Li+-uptake was mediated by a conductive pathway, we performed two-electrode voltage clamping (TEVC) on the oocytes. The aeCCC2 oocytes were characterized by an enhanced conductance for Li+ and Na+, but not K+, compared to control oocytes. It remains to be determined whether aeCCC2 directly mediates the Na+/Li+ conductance or whether heterologous expression of aeCCC2 stimulates an endogenous cation channel in the oocyte plasma membrane.


2004 ◽  
Vol 287 (5) ◽  
pp. C1436-C1444 ◽  
Author(s):  
Yongyue Chen ◽  
Brian Button ◽  
Guillermo A. Altenberg ◽  
Luis Reuss

Activity of the human (h) cystic fibrosis transmembrane conductance regulator (CFTR) channel is predominantly regulated by PKA-mediated phosphorylation. In contrast, Xenopus ( X)CFTR is more responsive to PKC than PKA stimulation. We investigated the interaction between the two kinases in XCFTR. We expressed XCFTR in Xenopus oocytes and maximally stimulated it with PKA agonists. The magnitude of activation after PKC stimulation was about eightfold that without pretreatment with PKC agonist. hCFTR, expressed in the same system, lacked this response. We name this phenomenon XCFTR-specific PKC potentiation effect. To ascertain its biophysical mechanism, we first tested for XCFTR channel insertion into the plasma membrane by a substituted-cysteine-accessibility method. No insertion was detected during kinase stimulation. Next, we studied single-channel properties and found that the single-channel open probability ( Po) with PKA stimulation subsequent to PKC stimulation was 2.8-fold that observed in the absence of PKC preactivation and that single-channel conductance (γ) was increased by ∼22%. To ascertain which XCFTR regions are responsible for the potentiation, we constructed several XCFTR-hCFTR chimeras, expressed them in Xenopus oocytes, and tested them electrophysiologically. Two chimeras [hCFTR NH2-terminal region or regulatory (R) domain in XCFTR] showed a significant decrease in potentiation. In the chimera in which XCFTR nucleotide-binding domain (NBD)2 was replaced with the hCFTR sequence there was no potentiation whatsoever. The converse chimera (hCFTR with Xenopus NBD2) did not exhibit potentiation. These results indicate that potentiation by PKC involves a large increase in Po (with a small change in γ) without CFTR channel insertion into the plasma membrane, that XCFTR NBD2 is necessary but not sufficient for the effect, and that the potentiation effect is likely to involve other CFTR domains.


2018 ◽  
Vol 150 (8) ◽  
pp. 1179-1187 ◽  
Author(s):  
Pradeep Kota ◽  
Martina Gentzsch ◽  
Yan L. Dang ◽  
Richard C. Boucher ◽  
M. Jackson Stutts

Epithelial Na+ channels comprise three homologous subunits (α, β, and γ) that are regulated by alternative splicing and proteolytic cleavage. Here, we determine the basis of the reduced Na+ current (INa) that results from expression of a previously identified, naturally occurring splice variant of the α subunit (α-ENaC), in which residues 34–82 are deleted (αΔ34–82). αΔ34–82-ENaC expression with WT β and γ subunits in Xenopus oocytes produces reduced basal INa, which can largely be recovered by exogenous trypsin. With this αΔ34–82-containing ENaC, both α and γ subunits display decreased cleavage fragments, consistent with reduced processing by furin or furin-like convertases. Data using MTSET modification of a cysteine, introduced into the degenerin locus in β-ENaC, suggest that the reduced INa of αΔ34–82-ENaC arises from an increased population of uncleaved, near-silent ENaC, rather than from a reduced open probability spread uniformly across all channels. After treatment with brefeldin A to disrupt anterograde trafficking of channel subunits, INa in oocytes expressing αΔ34–82-ENaC is reestablished more slowly than that in oocytes expressing WT ENaC. Overnight or acute incubation of oocytes expressing WT ENaC in the pore blocker amiloride increases basal ENaC proteolytic stimulation, consistent with relief of Na+ feedback inhibition. These responses are reduced in oocytes expressing αΔ34–82-ENaC. We conclude that the α-ENaC N terminus mediates interactions that govern the delivery of cleaved and uncleaved ENaC populations to the oocyte membrane.


2009 ◽  
Vol 297 (6) ◽  
pp. R1647-R1659 ◽  
Author(s):  
Akira Kato ◽  
Min-Hwang Chang ◽  
Yukihiro Kurita ◽  
Tsutomu Nakada ◽  
Maho Ogoshi ◽  
...  

Sulfate (SO42−) is the second most abundant anion in seawater (SW), and excretion of excess SO42− from ingested SW is essential for marine fish to survive. Marine teleosts excrete SO42− via the urine produced in the kidney. The SO42− transporter that secretes and concentrates SO42− in the urine has not previously been identified. Here, we have identified and characterized candidates for the long-sought transporters. Using sequences from the fugu database, we have cloned cDNA fragments of all transporters belonging to the Slc13 and Slc26 families from mefugu ( Takifugu obscurus ). We compared Slc13 and Slc26 mRNA expression in the kidney between freshwater (FW) and SW mefugu. Among 14 clones examined, the expression of a Slc26a6 paralog (mfSlc26a6A) was the most upregulated (30-fold) in the kidney of SW mefugu. Electrophysiological analyses of Xenopus oocytes expressing mfSlc26a6A, mfSlc26a6B, and mouse Slc26a6 (mSlc26a6) demonstrated that all transporters mediate electrogenic Cl−/SO42−, Cl−/oxalate2−, and Cl−/ nHCO3− exchanges and electroneutral Cl−/formate− exchange. Two-electrode voltage-clamp experiments demonstrated that the SO42−-elicited currents of mfSlc26a6A is quite large (∼35 μA at +60 mV) and 50- to 200-fold higher than those of mfSlc26a6B and mSlc26a6. Conversely, the currents elicited by oxalate and HCO3− are almost identical among mfSlc26a6A, mfSlc26a6B, and mSlc26a6. Kinetic analysis revealed that mfSlc26a6A has the highest SO42− affinity as well as capacity. Immunohistochemical analyses demonstrated that mfSlc26a6A localizes to the apical (brush-border) region of the proximal tubules. Together, these findings suggest that mfSlc26a6A is the most likely candidate for the major apical SO42− transporter that mediates SO42− secretion in the kidney of marine teleosts.


2000 ◽  
Vol 115 (5) ◽  
pp. 533-546 ◽  
Author(s):  
Irina I. Grichtchenko ◽  
Michael F. Romero ◽  
Walter F. Boron

We studied the extracellular [HCOabstract 3 −] dependence of two renal clones of the electrogenic Na/HCO3 cotransporter (NBC) heterologously expressed in Xenopus oocytes. We used microelectrodes to measure the change in membrane potential (ΔVm) elicited by the NBC cloned from the kidney of the salamander Ambystoma tigrinum (akNBC) and by the NBC cloned from the kidney of rat (rkNBC). We used a two-electrode voltage clamp to measure the change in current (ΔI) elicited by rkNBC. Briefly exposing an NBC-expressing oocyte to HCOabstract 3 −/CO2 (0.33–99 mM HCOabstract 3−, pHo 7.5) elicited an immediate, DIDS (4,4-diisothiocyanatostilbene-2,2-disulfonic acid)-sensitive and Na+-dependent hyperpolarization (or outward current). In ΔVm experiments, the apparent Km for HCOabstract 3− of akNBC (10.6 mM) and rkNBC (10.8 mM) were similar. However, under voltage-clamp conditions, the apparent Km for HCOabstract 3− of rkNBC was less (6.5 mM). Because it has been reported that SOabstract 3=/HSO abstract 3− stimulates Na/HCO3 cotransport in renal membrane vesicles (a result that supports the existence of a COabstract 3= binding site with which SOabstract 3= interacts), we examined the effect of SOabstract 3=/HSO abstract 3− on rkNBC. In voltage-clamp studies, we found that neither 33 mM SOabstract 4= nor 33 mM SOabstract 3 =/HSOabstract 3− substantially affects the apparent Km for HCO abstract 3−. We also used microelectrodes to monitor intracellular pH (pHi) while exposing rkNBC-expressing oocytes to 3.3 mM HCOabstract 3 −/0.5% CO2. We found that SO abstract 3=/HSOabstract 3 − did not significantly affect the DIDS-sensitive component of the pHi recovery from the initial CO2 -induced acidification. We also monitored the rkNBC current while simultaneously varying [CO2]o, pHo, and [COabstract 3=]o at a fixed [HCOabstract 3−]o of 33 mM. A Michaelis-Menten equation poorly fitted the data expressed as current versus [COabstract 3=]o . However, a pH titration curve nicely fitted the data expressed as current versus pHo. Thus, rkNBC expressed in Xenopus oocytes does not appear to interact with SOabstract 3 =, HSOabstract 3−, or COabstract 3=.


1992 ◽  
Vol 103 (4) ◽  
pp. 1139-1152
Author(s):  
J.W. Kok ◽  
K. Hoekstra ◽  
S. Eskelinen ◽  
D. Hoekstra

Recycling pathways of the sphingolipid glucosylceramide were studied by employing a fluorescent analog of glucosylceramide, 6(-)[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoylglucosyl sphingosine (C6-NBD-glucosylceramide). Direct recycling of the glycolipid from early endosomes to the plasma membrane occurs, as could be shown after treating the cells with the microtubule-disrupting agent nocodazole, which causes inhibition of the glycolipid's trafficking from peripheral early endosomes to centrally located late endosomes. When the microtubuli are intact, at least part of the glucosylceramide is transported from early to late endosomes together with ricin. Interestingly, also N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a membrane marker of the fluid-phase endocytic pathway, is transported to this endosomal compartment. However, in contrast to both ricin and N-Rh-PE, the glucosylceramide can escape from this organelle and recycle to the plasma membrane. Monensin and brefeldin A have little effect on this recycling pathway, which would exclude extensive involvement of early Golgi compartments in recycling. Hence, the small fraction of the glycolipid that colocalizes with transferrin (Tf) in the Golgi area might directly recycle via the trans-Golgi network. When the intracellular pH was lowered to 5.5, recycling was drastically reduced, in accordance with the impeding effect of low intracellular pH on vesicular transport during endocytosis and in the biosynthetic pathway. Our results thus demonstrate the existence of at least two recycling pathways for glucosylceramide and indicate the relevance of early endosomes in recycling of both proteins and lipids.


2010 ◽  
Vol 299 (6) ◽  
pp. C1386-C1397 ◽  
Author(s):  
Nazih L. Nakhoul ◽  
Solange M. Abdulnour-Nakhoul ◽  
Eric Schmidt ◽  
Rienk Doetjes ◽  
Edd Rabon ◽  
...  

Rhbg is a membrane glycoprotein that is involved in NH3/NH4+ transport. Several models have been proposed to describe Rhbg, including an electroneutral NH4+/H+ exchanger, a uniporter, an NH4+ channel, or even a gas channel. In this study, we characterized the pH sensitivity of Rhbg expressed in Xenopus oocytes. We used two-electrode voltage clamp and ion-selective microelectrodes to measure NH4+-induced [and methyl ammonium (MA+)] currents and changes in intracellular pH (pHi), respectively. In oocytes expressing Rhbg, 5 mM NH4Cl (NH3/NH4+) at extracellular pH (pHo) of 7.5 induced an inward current, decreased pHi, and depolarized the cell. Raising pHo to 8.2 significantly enhanced the NH4+-induced current and pHi changes, whereas decreasing bath pH to 6.5 inhibited these changes. Lowering pHi (decreased by butyrate) also inhibited the NH4+-induced current and pHi decrease. In oocytes expressing Rhbg, 5 mM methyl amine hydrochloride (MA/MA+), often used as an NH4Cl substitute, induced an inward current, a pHi increase (not a decrease), and depolarization of the cell. Exposing the oocyte to MA/MA+ at alkaline bath pH (8.2) enhanced the MA+-induced current, whereas lowering bath pH to 6.5 inhibited the MA+ current completely. Exposing the oocyte to MA/MA+ at low pHi abolished the MA+-induced current and depolarization; however, pHi still increased. These data indicate that 1) transport of NH4+ and MA/MA+ by Rhbg is pH sensitive; 2) electrogenic NH4+ and MA+ transport are stimulated by alkaline pHo but inhibited by acidic pHi or pHo; and 3) electroneutral transport of MA by Rhbg is likely but is less sensitive to pH changes.


2002 ◽  
Vol 115 (4) ◽  
pp. 783-791 ◽  
Author(s):  
Steven Y. Chang ◽  
Anke Di ◽  
Anjaparavanda P. Naren ◽  
H. Clive Palfrey ◽  
Kevin L. Kirk ◽  
...  

Activation of the chloride selective anion channel CFTR is stimulated by cAMP-dependent phosphorylation and is regulated by the target membrane t-SNARE syntaxin 1A. The mechanism by which SNARE proteins modulate CFTR in secretory epithelia is controversial. In addition, controversy exists as to whether PKA activates CFTR-mediated Cl- currents (ICFTR) by increasing the number of channels in the plasma membrane and/or by stimulating membrane-resident channels. SNARE proteins play a well known role in exocytosis and have recently been implicated in the regulation of ion channels; therefore this investigation sought to resolve two related issues:(a) is PKA activation or SNARE protein modulation of CFTR linked to changes in membrane turnover and (b) does syntaxin 1A modulate CFTR via direct effects on the gating of channels residing in the plasma membrane versus alterations in membrane traffic. Our data demonstrate that syntaxin 1A inhibits CFTR as a result of direct protein-protein interactions that decrease channel open probability (Po) and serves as a model for other SNARE protein-ion channel interactions. We also show that PKA activation can enhance membrane trafficking in some epithelial cell types, and this is independent from CFTR activation or syntaxin 1A association.


Sign in / Sign up

Export Citation Format

Share Document