Mechanisms of CFTR regulation by syntaxin 1A and PKA

2002 ◽  
Vol 115 (4) ◽  
pp. 783-791 ◽  
Author(s):  
Steven Y. Chang ◽  
Anke Di ◽  
Anjaparavanda P. Naren ◽  
H. Clive Palfrey ◽  
Kevin L. Kirk ◽  
...  

Activation of the chloride selective anion channel CFTR is stimulated by cAMP-dependent phosphorylation and is regulated by the target membrane t-SNARE syntaxin 1A. The mechanism by which SNARE proteins modulate CFTR in secretory epithelia is controversial. In addition, controversy exists as to whether PKA activates CFTR-mediated Cl- currents (ICFTR) by increasing the number of channels in the plasma membrane and/or by stimulating membrane-resident channels. SNARE proteins play a well known role in exocytosis and have recently been implicated in the regulation of ion channels; therefore this investigation sought to resolve two related issues:(a) is PKA activation or SNARE protein modulation of CFTR linked to changes in membrane turnover and (b) does syntaxin 1A modulate CFTR via direct effects on the gating of channels residing in the plasma membrane versus alterations in membrane traffic. Our data demonstrate that syntaxin 1A inhibits CFTR as a result of direct protein-protein interactions that decrease channel open probability (Po) and serves as a model for other SNARE protein-ion channel interactions. We also show that PKA activation can enhance membrane trafficking in some epithelial cell types, and this is independent from CFTR activation or syntaxin 1A association.

2000 ◽  
Vol 113 (1) ◽  
pp. 145-152 ◽  
Author(s):  
M.M. Tsui ◽  
D.K. Banfield

The transport of proteins between various compartments of the secretory pathway occurs by the budding of vesicles from one membrane and their fusion with another. A key event in this process is the selective recognition of the target membrane by the vesicle and the current view is that SNARE protein interactions likely play a central role in vesicle-target recognition and or membrane fusion. In yeast, only a single syntaxin (Sed5p) is required for Golgi transport and Sed5p is known to bind to at least 7 SNARE proteins. However, the number of Sed5p-containing SNARE complexes that exist in cells is not known. In this study we examined direct pair-wise interactions between full length soluble recombinant forms of SNAREs (Sed5p, Sft1p, Ykt6p, Vti1p, Gos1p, Sec22p, Bos1p, and Bet1p) involved in ER-Golgi and intra-Golgi membrane trafficking. In the binding assay that we describe here the majority of SNARE-binary interactions tested were positive, indicating that SNARE-SNARE interactions although promiscuous are not entirely non-selective. Interactions between a number of the genes encoding these SNAREs are consistent with our binding data and taken together our results suggest that functionally redundant Golgi SNARE-complexes exist in yeast. In particular, over-expression of Bet1p (a SNARE required for ER-Golgi and Golgi-ER traffic) and can bypass the requirement for the otherwise essential SNARE Sft1p (required for intra-Golgi traffic), suggesting that Bet1p either functions in a parallel pathway with Sft1p or can be incorporated into SNARE-complexes in place of Sftp1. None-the-less this result suggests that Bet1p can participate in two distinct trafficking steps, cycling between the ER and Golgi as well as in retrograde intra-Golgi traffic. In addition, suppressor genetics together with the analysis of the phenotypes of conditional mutations in Sft1p and Ykt6p, are consistent with a role for these SNAREs in more than one trafficking step. We propose that different combinations of SNAREs form complexes with Sed5p and are required for multiple steps in ER-Golgi and intra-Golgi vesicular traffic. And that the apparent promiscuity of SNARE-SNARE binding interactions, together with the requirement for some SNAREs in more than one trafficking step, supports the view that the specificity of vesicle fusion events cannot be explained solely on the basis of SNARE-SNARE interactions.


2009 ◽  
Vol 30 (1) ◽  
pp. 333-343 ◽  
Author(s):  
Cheng-Chun Wang ◽  
Chee Peng Ng ◽  
Hong Shi ◽  
Hwee Chien Liew ◽  
Ke Guo ◽  
...  

ABSTRACT Vesicle-associated-membrane protein 8 (VAMP8) is highly expressed in the kidney, but the exact physiological and molecular functions executed by this v-SNARE protein in nephrons remain elusive. Here, we show that the depletion of VAMP8 in mice resulted in hydronephrosis. Furthermore, the level of the vasopressin-responsive water channel aquaporin 2 (AQP2) was increased by three- to fivefold in VAMP8-null mice. Forskolin and [desamino-Cys1, D-Arg8]-vasopressin (DDAVP)-induced AQP2 exocytosis was impaired in VAMP8-null collecting duct cells. VAMP8 was revealed to colocalize with AQP2 on intracellular vesicles and to interact with the plasma membrane t-SNARE proteins syntaxin4 and syntaxin3, suggesting that VAMP8 mediates the regulated fusion of AQP2-positive vesicles with the plasma membrane.


2012 ◽  
Vol 92 (4) ◽  
pp. 1915-1964 ◽  
Author(s):  
Haruo Kasai ◽  
Noriko Takahashi ◽  
Hiroshi Tokumaru

The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.


2004 ◽  
Vol 24 (11) ◽  
pp. 5039-5049 ◽  
Author(s):  
Sigrun R. Hofmann ◽  
Albert Q. Lam ◽  
Stephan Frank ◽  
Yong-Jie Zhou ◽  
Haydeé L. Ramos ◽  
...  

ABSTRACT Janus kinases (Jaks) play an essential role in cytokine signaling and have been reported to regulate plasma membrane expression of their cognate receptors. In this study, we examined whether Jak3 and the common γ chain (γc) reciprocally regulate their plasma membrane expression. In contrast to interleukin-2Rα, γc localized poorly to the plasma membrane and accumulated in endosomal-lysosomal compartments. However, γc was expressed at comparable levels on the surface of cells lacking Jak3, and plasma membrane turnover of γc was independent of Jak3. Nonetheless, overexpression of Jak3 enhanced accumulation of γc at the plasma membrane. Without γc, Jak3 localized in the cytosol, whereas in the presence of the receptor, it colocalized with γc in endosomes and at the plasma membrane. Although the Jak FERM domain is necessary and sufficient for receptor binding, the requirement for full-length Jak3 in γc membrane trafficking was remarkably stringent; using truncation and deletion mutants, we showed that the entire Jak3 molecule was required, although kinase activity was not. Thus, unlike other cytokine receptors, γc does not require Jak3 for receptor membrane expression. However, full-length Jak3 is required for normal trafficking of this cytokine receptor/Jak pair, a finding that has important structural and clinical implications.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Jennifer Hirst ◽  
Alexander Schlacht ◽  
John P Norcott ◽  
David Traynor ◽  
Gareth Bloomfield ◽  
...  

The heterotetrameric AP and F-COPI complexes help to define the cellular map of modern eukaryotes. To search for related machinery, we developed a structure-based bioinformatics tool, and identified the core subunits of TSET, a 'missing link' between the APs and COPI. Studies in Dictyostelium indicate that TSET is a heterohexamer, with two associated scaffolding proteins. TSET is non-essential in Dictyostelium, but may act in plasma membrane turnover, and is essentially identical to the recently described TPLATE complex, TPC. However, whereas TPC was reported to be plant-specific, we can identify a full or partial complex in every eukaryotic supergroup. An evolutionary path can be deduced from the earliest origins of the heterotetramer/scaffold coat to its multiple manifestations in modern organisms, including the mammalian muniscins, descendants of the TSET medium subunits. Thus, we have uncovered the machinery for an ancient and widespread pathway, which provides new insights into early eukaryotic evolution.


2013 ◽  
Vol 141 (5) ◽  
pp. 585-600 ◽  
Author(s):  
Søren Grubb ◽  
Kristian A. Poulsen ◽  
Christian Ammitzbøll Juul ◽  
Tania Kyed ◽  
Thomas K. Klausen ◽  
...  

Members of the TMEM16 (Anoctamin) family of membrane proteins have been shown to be essential constituents of the Ca2+-activated Cl− channel (CaCC) in many cell types. In this study, we have investigated the electrophysiological properties of mouse TMEM16F. Heterologous expression of TMEM16F in HEK293 cells resulted in plasma membrane localization and an outwardly rectifying ICl,Ca that was activated with a delay of several minutes. Furthermore, a significant Na+ current was activated, and the two permeabilities were correlated according to PNa = 0.3 PCl. The current showed an EC50 of 100 µM intracellular free Ca2+ concentration and an Eisenman type 1 anion selectivity sequence of PSCN > PI > PBr > PCl > PAsp. The mTMEM16F-associated ICl,Ca was abolished in one mutant of the putative pore region (R592E) but retained in two other mutants (K616E and R636E). The mutant K616E had a lower relative permeability to iodide, and the mutant R636E had an altered anion selectivity sequence (PSCN = PI = PBr = PCl > PAsp). Our data provide evidence that TMEM16F constitutes a Ca2+-activated anion channel or a pore-forming subunit of an anion channel with properties distinct from TMEM16A.


2003 ◽  
Vol 162 (4) ◽  
pp. 647-659 ◽  
Author(s):  
Yoshikatsu Aikawa ◽  
Thomas F.J. Martin

ADP-ribosylation factor (ARF) 6 regulates endosomal plasma membrane trafficking in many cell types, but is also suggested to play a role in Ca2+-dependent dense-core vesicle (DCV) exocytosis in neuroendocrine cells. In the present work, expression of the constitutively active GTPase-defective ARF6Q67L mutant in PC12 cells was found to inhibit Ca2+-dependent DCV exocytosis. The inhibition of exocytosis was accompanied by accumulation of ARFQ67L, phosphatidylinositol 4,5-bisphosphate (PIP2), and the phosphatidylinositol 4-phosphate 5-kinase type I (PIP5KI) on endosomal membranes with their corresponding depletion from the plasma membrane. That the depletion of PIP2 and PIP5K from the plasma membrane caused the inhibition of DCV exocytosis was demonstrated directly in permeable cell reconstitution studies in which overexpression or addition of PIP5KIγ restored Ca2+-dependent exocytosis. The restoration of exocytosis in ARF6Q67L-expressing permeable cells unexpectedly exhibited a Ca2+ dependence, which was attributed to the dephosphorylation and activation of PIP5K. Increased Ca2+ and dephosphorylation stimulated the association of PIP5KIγ with ARF6. The results reveal a mechanism by which Ca2+ influx promotes increased ARF6-dependent synthesis of PIP2. We conclude that ARF6 plays a role in Ca2+-dependent DCV exocytosis by regulating the activity of PIP5K for the synthesis of an essential plasma membrane pool of PIP2.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jasmin Mertins ◽  
Jérôme Finke ◽  
Ricarda Antonia Sies ◽  
Kerstin Rink ◽  
Jan Hasenauer ◽  
...  

SNARE proteins have been described as the effectors of fusion events in the secretory pathway more than two decades ago. The strong interactions between SNARE-domains are clearly important in membrane fusion, but it is unclear whether they are involved in any other cellular processes. Here, we analyzed two classical SNARE proteins, syntaxin 1A and SNAP25. Although they are supposed to be engaged in tight complexes, we surprisingly find them largely segregated in the plasma membrane. Syntaxin 1A only occupies a small fraction of the plasma membrane area. Yet, we find it is able to redistribute the far more abundant SNAP25 on the mesoscale by gathering crowds of SNAP25 molecules onto syntaxin-clusters in a SNARE-domain dependent manner. Our data suggests that SNARE-domain interactions are not only involved in driving membrane fusion on the nanoscale, but also play an important role in controlling the general organization of proteins on the mesoscale. Further, we propose this mechanisms preserves active syntaxin 1A-SNAP25 complexes at the plasma membrane.


2017 ◽  
Vol 292 (8) ◽  
pp. 3074-3088 ◽  
Author(s):  
Santiago Lima ◽  
Sheldon Milstien ◽  
Sarah Spiegel

The balance between cholesterol and sphingolipids within the plasma membrane has long been implicated in endocytic membrane trafficking. However, in contrast to cholesterol functions, little is still known about the roles of sphingolipids and their metabolites. Perturbing the cholesterol/sphingomyelin balance was shown to induce narrow tubular plasma membrane invaginations enriched with sphingosine kinase 1 (SphK1), the enzyme that converts the bioactive sphingolipid metabolite sphingosine to sphingosine-1-phosphate, and suggested a role for sphingosine phosphorylation in endocytic membrane trafficking. Here we show that sphingosine and sphingosine-like SphK1 inhibitors induced rapid and massive formation of vesicles in diverse cell types that accumulated as dilated late endosomes. However, much smaller vesicles were formed in SphK1-deficient cells. Moreover, inhibition or deletion of SphK1 prolonged the lifetime of sphingosine-induced vesicles. Perturbing the plasma membrane cholesterol/sphingomyelin balance abrogated vesicle formation. This massive endosomal influx was accompanied by dramatic recruitment of the intracellular SphK1 and Bin/Amphiphysin/Rvs domain-containing proteins endophilin-A2 and endophilin-B1 to enlarged endosomes and formation of highly dynamic filamentous networks containing endophilin-B1 and SphK1. Together, our results highlight the importance of sphingosine and its conversion to sphingosine-1-phosphate by SphK1 in endocytic membrane trafficking.


2001 ◽  
Vol 118 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Peng Chen ◽  
Tzyh-Chang Hwang ◽  
Kevin D. Gillis

The mechanism whereby cAMP stimulates Cl− flux through CFTR ion channels in secretory epithelia remains controversial. It is generally accepted that phosphorylation by cAMP-dependent protein kinase increases the open probability of the CFTR channel. A more controversial hypothesis is that cAMP triggers the translocation of CFTR from an intracellular pool to the cell surface. We have monitored membrane turnover in Calu-3 cells, a cell line derived from human airway submucosal glands that expresses high levels of CFTR using membrane capacitance and FM1–43 fluorescence measurements. Using a conventional capacitance measurement technique, we observe an apparent increase in membrane capacitance in most cells that exhibit an increase in Cl− current. However, after we carefully correct our recordings for changes in membrane conductance, the apparent changes in capacitance are eliminated. Measurements using the fluorescent membrane marker FM1–43 also indicate that no changes in membrane turnover accompany the activation of CFTR. Robust membrane insertion can be triggered with photorelease of caged Ca2+ in Calu-3 cells. However, no increase in Cl− current accompanies Ca2+-evoked membrane fusion. We conclude that neither increases in cAMP or Ca2+ lead to transport of CFTR to the plasma membrane in Calu-3 cells. In addition, we conclude that membrane capacitance measurements must be interpreted with caution when large changes in membrane conductance occur.


Sign in / Sign up

Export Citation Format

Share Document