scholarly journals Dynamic Inositol Trisphosphate-mediated Calcium Signals within Astrocytic Endfeet Underlie Vasodilation of Cerebral Arterioles

2006 ◽  
Vol 128 (6) ◽  
pp. 659-669 ◽  
Author(s):  
Stephen V. Straub ◽  
Adrian D. Bonev ◽  
M. Keith Wilkerson ◽  
Mark T. Nelson

Active neurons communicate to intracerebral arterioles in part through an elevation of cytosolic Ca2+ concentration ([Ca2+]i) in astrocytes, leading to the generation of vasoactive signals involved in neurovascular coupling. In particular, [Ca2+]i increases in astrocytic processes (“endfeet”), which encase cerebral arterioles, have been shown to result in vasodilation of arterioles in vivo. However, the spatial and temporal properties of endfoot [Ca2+]i signals have not been characterized, and information regarding the mechanism by which these signals arise is lacking. [Ca2+]i signaling in astrocytic endfeet was measured with high spatiotemporal resolution in cortical brain slices, using a fluorescent Ca2+ indicator and confocal microscopy. Increases in endfoot [Ca2+]i preceded vasodilation of arterioles within cortical slices, as detected by simultaneous measurement of endfoot [Ca2+]i and vascular diameter. Neuronal activity–evoked elevation of endfoot [Ca2+]i was reduced by inhibition of inositol 1,4,5-trisphosphate (InsP3) receptor Ca2+ release channels and almost completely abolished by inhibition of endoplasmic reticulum Ca2+ uptake. To probe the Ca2+ release mechanisms present within endfeet, spatially restricted flash photolysis of caged InsP3 was utilized to liberate InsP3 directly within endfeet. This maneuver generated large amplitude [Ca2+]i increases within endfeet that were spatially restricted to this region of the astrocyte. These InsP3-induced [Ca2+]i increases were sensitive to depletion of the intracellular Ca2+ store, but not to ryanodine, suggesting that Ca2+-induced Ca2+ release from ryanodine receptors does not contribute to the generation of endfoot [Ca2+]i signals. Neuronally evoked increases in astrocytic [Ca2+]i propagated through perivascular astrocytic processes and endfeet as multiple, distinct [Ca2+]i waves and exhibited a high degree of spatial heterogeneity. Regenerative Ca2+ release processes within the endfeet were evident, as were localized regions of Ca2+ release, and treatment of slices with the vasoactive neuropeptides somatostatin and vasoactive intestinal peptide was capable of inducing endfoot [Ca2+]i increases, suggesting the potential for signaling between local interneurons and astrocytic endfeet in the cortex. Furthermore, photorelease of InsP3 within individual endfeet resulted in a local vasodilation of adjacent arterioles, supporting the concept that astrocytic endfeet function as local “vasoregulatory units” by translating information from active neurons into complex InsP3-mediated Ca2+ release signals that modulate arteriolar diameter.

2019 ◽  
Vol 124 (12) ◽  
Author(s):  
Alexander Joerk ◽  
Marcel Ritter ◽  
Niklas Langguth ◽  
Raphael Andreas Seidel ◽  
Diana Freitag ◽  
...  

Rationale: Delayed ischemic neurological deficit is the most common cause of neurological impairment and unfavorable prognosis in patients with subarachnoid hemorrhage (SAH). Despite the existence of neuroimaging modalities that depict the onset of the accompanying cerebral vasospasm, preventive and therapeutic options are limited and fail to improve outcome owing to an insufficient pathomechanistic understanding of the delayed perfusion deficit. Previous studies have suggested that BOXes (bilirubin oxidation end products), originating from released heme surrounding ruptured blood vessels, are involved in arterial vasoconstriction. Recently, isolated intermediates of oxidative bilirubin degradation, known as PDPs (propentdyopents), have been considered as potential additional effectors in the development of arterial vasoconstriction. Objective: To investigate whether PDPs and BOXes are present in hemorrhagic cerebrospinal fluid and involved in the vasoconstriction of cerebral arterioles. Methods and Results: Via liquid chromatography/mass spectrometry, we measured increased PDP and BOX concentrations in cerebrospinal fluid of SAH patients compared with control subjects. Using differential interference contrast microscopy, we analyzed the vasoactivity of PDP isomers in vitro by monitoring the arteriolar diameter in mouse acute brain slices. We found an arteriolar constriction on application of PDPs in the concentration range that occurs in the cerebrospinal fluid of patients with SAH. By imaging arteriolar diameter changes using 2-photon microscopy in vivo, we demonstrated a short-onset vasoconstriction after intrathecal injection of either PDPs or BOXes. Using magnetic resonance imaging, we observed a long-term PDP-induced delay in cerebral perfusion. For all conditions, the arteriolar narrowing was dependent on functional big conductance potassium channels and was absent in big conductance potassium channels knockout mice. Conclusions: For the first time, we have quantified significantly higher concentrations of PDP and BOX isomers in the cerebrospinal fluid of patients with SAH compared to controls. The vasoconstrictive effect caused by PDPs in vitro and in vivo suggests a hitherto unrecognized pathway contributing to the pathogenesis of delayed ischemic deficit in patients with SAH.


1995 ◽  
Vol 269 (3) ◽  
pp. H783-H788 ◽  
Author(s):  
J. E. Brian ◽  
D. D. Heistad ◽  
F. M. Faraci

Lipopolysaccharide (LPS; endotoxin) produces dilatation of cerebral arterioles in vivo which may be due, in part, to expression of inducible nitric oxide (NO) synthase. We tested the hypothesis that aminoguanidine, an inhibitor of inducible NO synthase, would reduce endotoxin-induced dilatation of cerebral arterioles. Because mechanisms other than expression of inducible NO synthase may contribute to endotoxin-induced dilatation of cerebral arterioles, we also tested the hypothesis that calcitonin gene-related peptide (CGRP) contributes to vascular responses to endotoxin. Cerebral arteriolar diameter was measured using a closed cranial window in anesthetized rabbits under control conditions [77 +/- 3 (SE) microns] and during topical application of endotoxin (100 micrograms/ml). After 4 h, diameter of cerebral arterioles increased by 41 +/- 5%. Coapplication of aminoguanidine (0.3 mM) with endotoxin reduced vasodilatation at all time points (30 min to 4 h). Relative to control values, endotoxin treatment increased guanosine 3',5'-cyclic monophosphate (cGMP) concentration in cerebrospinal fluid (CSF) by approximately 20 fold at 4 h. Aminoguanidine attenuated the endotoxin-induced increased in CSF cGMP concentration. Aminoguanidine (0.3 mM) did not alter acetylcholine-mediated dilatation of cerebral arterioles. Coapplication of CGRP-(8-37) (0.5 microM), a specific blocker of CGRP receptors, with endotoxin significantly reduced vasodilatation in response to endotoxin at 2, 3, and 4 h. Thus 1) aminoguanidine inhibits endotoxin- but not acetylcholine-mediated dilatation of cerebral arterioles, and 2) activation of CGRP receptors mediates a portion of endotoxin-induced dilation of cerebral arterioles.


2002 ◽  
Vol 282 (1) ◽  
pp. H237-H243 ◽  
Author(s):  
H.-L. Xu ◽  
D. L. Feinstein ◽  
R. A. Santizo ◽  
H. M. Koenig ◽  
D. A. Pelligrino

Nitric oxide (NO), derived from the endothelial isoform of NO synthase (eNOS), is a vital mediator of cerebral vasodilation. In the present study, we addressed the issue of whether the mechanisms responsible for agonist-induced eNOS activation differ according to the specific receptor being stimulated. Thus we examined whether heat shock protein 90 (HSP90), phosphatidylinositol-3-kinase (PI3K), and tyrosine kinase participate in ACh- versus ADP-induced eNOS activation in cerebral arterioles in vivo. Pial arteriolar diameter changes in anesthetized male rats were measured during sequential applications of ACh and ADP in the absence and presence of the nonselective NOS inhibitor N ω-nitro-l-arginine methyl ester (l-NAME), the neuronal NOS (nNOS)-selective inhibitor ARR-17477, the HSP90 blocker 17-(allylamino)-17-demethoxygeldanamycin (AAG), the PI3K inhibitor wortmannin (Wort), or the tyrosine kinase blocker tyrphostin 47 (T-47). Only NOS inhibition with l-NAME (not ARR-17477) reduced ACh and ADP responses (by 65–75%), which suggests that all of the NO dependence in the vasodilating actions of those agonists derived from eNOS. Suffusions of AAG, Wort, and T-47 were accompanied by substantial reductions in ACh-induced dilations but no changes in the responses to ADP. These findings suggest that muscarinic (ACh) and purinergic (ADP) receptor-mediated eNOS activation in cerebral arterioles involve distinctly different signal transduction pathways.


2020 ◽  
Author(s):  
Ao Dong ◽  
Kaikai He ◽  
Barna Dudok ◽  
Jordan S Farrell ◽  
Wuqiang Guan ◽  
...  

Endocannabinoids (eCBs) are retrograde neuromodulators that play an important role in a wide range of physiological processes; however, the release and in vivo dynamics of eCBs remain largely unknown, due in part to a lack of suitable probes capable of detecting eCBs with sufficient spatiotemporal resolution. Here, we developed a new eCB sensor called GRABeCB2.0. This genetically encoded sensor consists of the human CB1 cannabinoid receptor fused to circular-permutated EGFP, providing cell membrane trafficking, second-resolution kinetics, high specificity for eCBs, and a robust fluorescence response at physiological eCB concentrations. Using the GRABeCB2.0 sensor, we monitored evoked changes in eCB dynamics in both cultured neurons and acute brain slices. Interestingly, in cultured neurons we also observed spontaneous compartmental eCB transients that spanned a distance of approximately 11 μm, suggesting constrained, localized eCB signaling. Moreover, by expressing GRABeCB2.0 in the mouse brain, we readily observed foot shock-elicited and running-triggered eCB transients in the basolateral amygdala and hippocampus, respectively. Lastly, we used GRABeCB2.0 in a mouse seizure model and observed a spreading wave of eCB release that followed a Ca2+ wave through the hippocampus. Thus, GRABeCB2.0 is a robust new probe for measuring the dynamics of eCB release under both physiological and pathological conditions.


2016 ◽  
Vol 2 (5) ◽  
pp. e1600061 ◽  
Author(s):  
Anja Steude ◽  
Emily C. Witts ◽  
Gareth B. Miles ◽  
Malte C. Gather

Optogenetics is a paradigm-changing new method to study and manipulate the behavior of cells with light. Following major advances of the used genetic constructs over the last decade, the light sources required for optogenetic control are now receiving increased attention. We report a novel optogenetic illumination platform based on high-density arrays of microscopic organic light-emitting diodes (OLEDs). Because of the small dimensions of each array element (6 × 9 μm2) and the use of ultrathin device encapsulation, these arrays enable illumination of cells with unprecedented spatiotemporal resolution. We show that adherent eukaryotic cells readily proliferate on these arrays, and we demonstrate specific light-induced control of the ionic current across the membrane of individual live cells expressing different optogenetic constructs. Our work paves the way for the use of OLEDs for cell-specific optogenetic control in cultured neuronal networks and for acute brain slices, or as implants in vivo.


1985 ◽  
Vol 5 (4) ◽  
pp. 554-559 ◽  
Author(s):  
Toshiharu Kamitani ◽  
Marcia H. Little ◽  
Earl F. Ellis

To determine the possible role that leukotrienes (LTs) may play in the regulation of cerebral blood flow, the responses of cerebral arterioles to LTs and 12-hydroxyeicosatetraenoic acid (12-HETE) were studied in vivo in rabbits equipped with a cranial window for direct observation of the microcirculation. Topical application of LTC, LTD4, or 12-HETE (1.6 × 10−9–3.1 × 10−6 M) neither constricted nor dilated the pial arteries. LTB4 produced only a 5% vasoconstriction at 3.0 × 10−6 M. However, bradykinin induced dose-dependent arteriolar vasodilation and histamine and 5-hydroxytryptamine induced dose-dependent arteriolar vasoconstriction. Although some LTs have potent vasoconstrictor activity in peripheral tissues and 5-lipoxygenase products have been hypothesized to be mediators of vasospasm after subarachnoid hemorrhage, LTB4, LTC4, LTD4, and 12-HETE apparently are unable to induce significant constriction of the cerebral arterioles in the anesthetized rabbit.


2017 ◽  
Author(s):  
Cristina Rodríguez ◽  
Yajie Liang ◽  
Rongwen Lu ◽  
Na Ji

Volumetric imaging tools that are simple to adopt, flexible, and robust, are in high demand in the field of neuroscience, where the ability to image neurons and their networks with high spatiotemporal resolution is essential. Using an axially elongated focus approximating a Bessel beam, in combination with two-photon fluorescence microscopy, has proven successful at such an endeavor. Here we demonstrate three-photon fluorescence imaging with an axially extended Bessel focus. We use an axicon-based module which allowed for the generation of Bessel foci of varying numerical aperture and axial length, and apply this volumetric imaging tool to image mouse brain slices and for in vivo imaging of the mouse brain.


2017 ◽  
Vol 37 (11) ◽  
pp. 3625-3634 ◽  
Author(s):  
Matilde Balbi ◽  
Masayo Koide ◽  
George C Wellman ◽  
Nikolaus Plesnila

Subarachnoid hemorrhage (SAH) induces acute changes in the cerebral microcirculation. Recent findings ex vivo suggest neurovascular coupling (NVC), the process that increases cerebral blood flow upon neuronal activity, is also impaired after SAH. The aim of the current study was to investigate whether this occurs also in vivo. C57BL/6 mice were subjected to either sham surgery or SAH by filament perforation. Twenty-four hours later NVC was tested by forepaw stimulation and CO2 reactivity by inhalation of 10% CO2. Vessel diameter was assessed in vivo by two-photon microscopy. NVC was also investigated ex vivo using brain slices. Cerebral arterioles of sham-operated mice dilated to 130% of baseline upon CO2 inhalation or forepaw stimulation and cerebral blood flow (CBF) increased. Following SAH, however, CO2 reactivity was completely lost and the majority of cerebral arterioles showed paradoxical constriction in vivo and ex vivo resulting in a reduced CBF response. As previous results showed intact NVC 3 h after SAH, the current findings indicate that impairment of NVC after cerebral hemorrhage occurs secondarily and is progressive. Since neuronal activity-induced vasoconstriction (inverse NVC) is likely to further aggravate SAH-induced cerebral ischemia and subsequent brain damage, inverse NVC may represent a novel therapeutic target after SAH.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S468-S468
Author(s):  
Jennifer K Callaway ◽  
Christine Molnar ◽  
Song T Yao ◽  
Bevyn Jarrott ◽  
R David Andrew

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


Sign in / Sign up

Export Citation Format

Share Document