astrocytic endfeet
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Sara M. Zarate ◽  
Taylor E. Huntington ◽  
Pooneh Bagher ◽  
Rahul Srinivasan

Aging-related impairment of the blood brain barrier (BBB) and neurovascular unit (NVU) increases risk for neurodegeneration. Among the various cells participating in BBB and NVU function, spontaneous Ca2+ signals in astrocytic endfeet are crucial for maintaining BBB and NVU integrity. To assess if aging is associated with changes in spontaneous Ca2+ signals within astrocytic endfeet of the dorsolateral striatum (DLS), we expressed a genetically encoded Ca2+ indicator, Lck-GCaMP6f in DLS astrocytes of young (3-4 month) and aging (20-24 month) mice. Compared to young mice, endfeet in the DLS of aging mice demonstrated a decrease in calreticulin (CALR) expression, and dramatic alterations in the dynamics of endfoot membrane-associated and mitochondrial Ca2+ signals. While young mice required both extracellular and endoplasmic reticulum (ER) Ca2+ sources for generating endfoot Ca2+ signals, aging mice showed exclusive dependence on ER Ca2+. These data suggest that aging is associated with significant changes in Ca2+ buffers and Ca2+ signals within astrocytic endfeet, which has important implications for understanding mechanisms involved in aging-related impairment of the BBB and NVU.


Author(s):  
Michaël Boily ◽  
Lin Li ◽  
Diane Vallerand ◽  
Hélène Girouard

Background Angiotensin II (Ang II), a critical mediator of hypertension, impairs neurovascular coupling. Since astrocytes are key regulators of neurovascular coupling, we sought to investigate whether Ang II impairs neurovascular coupling through modulation of astrocytic Ca 2+ signaling. Methods and Results Using laser Doppler flowmetry, we found that Ang II attenuates cerebral blood flow elevations induced by whisker stimulation or the metabotropic glutamate receptors agonist, 1S, 3R‐1‐aminocyclopentane‐ trans ‐1,3‐dicarboxylic acid ( P <0.01). In acute brain slices, Ang II shifted the vascular response induced by 1S, 3R‐1‐aminocyclopentane‐ trans ‐1,3‐dicarboxylic acid towards vasoconstriction ( P <0.05). The resting and 1S, 3R‐1‐aminocyclopentane‐ trans ‐1,3‐dicarboxylic acid–induced Ca 2+ levels in the astrocytic endfeet were more elevated in the presence of Ang II ( P <0.01). Both effects were reversed by the AT1 receptor antagonist, candesartan ( P <0.01 for diameter and P <0.05 for calcium levels). Using photolysis of caged Ca 2+ in astrocytic endfeet or pre‐incubation of 1,2‐Bis(2‐aminophenoxy)ethane‐ N,N,N',N' ‐tetra‐acetic acid tetrakis (acetoxymethyl ester), we demonstrated the link between potentiated Ca 2+ elevation and impaired vascular response in the presence of Ang II ( P <0.001 and P <0.05, respectively). Both intracellular Ca 2+ mobilization and Ca 2+ influx through transient receptor potential vanilloid 4 mediated Ang II‐induced astrocytic Ca 2+ elevation, since blockade of these pathways significantly prevented the intracellular Ca 2+ in response to 1S, 3R‐1‐aminocyclopentane‐ trans ‐1,3‐dicarboxylic acid ( P <0.05). Conclusions These results suggest that Ang II through its AT1 receptor potentiates the astrocytic Ca 2+ responses to a level that promotes vasoconstriction over vasodilation, thus altering cerebral blood flow increases in response to neuronal activity.


NeuroSci ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 59-74
Author(s):  
Frank Matthes ◽  
Hana Matuskova ◽  
Kajsa Arkelius ◽  
Saema Ansar ◽  
Iben Lundgaard ◽  
...  

The neurovascular niche is crucial for constant blood supply and blood-brain barrier (BBB) function and is altered in a number of different neurological conditions, making this an intensely active field of research. Brain vasculature is unique for its tight association of endothelial cells with astrocytic endfeet processes. Separation of the vascular compartment by centrifugation-based methods confirmed enrichment of astrocytic endfeet processes, making it possible to study the entire vascular niche with such methods. Several centrifugation-based separation protocols are found in the literature; however, with some constraints which limit their applicability and the scope of the studies. Here, we describe and validate a protocol for physically separating the neurovascular niche from the parenchyma, which is optimized for smaller tissue quantities. Using endothelial, neuronal, and astrocyte markers, we show that quantitative Western blot-based target detection can be performed of both the vessel-enriched and parenchymal fractions using as little as a single mouse brain hemisphere. Validation of our protocol in rodent stroke models by detecting changes in tight junction protein expression, serum albumin signals and astrocyte activation, i.e., increased glial fibrillary acidic protein expression, between the ipsilateral and the lesion-free contralateral hemisphere demonstrates this protocol as a new way of detecting BBB breakdown and astrogliosis, respectively.


Author(s):  
Frank Matthes ◽  
Hana Matuskova ◽  
Kajsa Arkelius ◽  
Saema Ansar ◽  
Iben Lundgaard ◽  
...  

The neurovascular niche is crucial for constant blood supply and blood-brain barrier (BBB) function and is altered in a number of different neurological conditions, making this an intensely active field of research. Brain vasculature is unique for its tight association of endothelial cells with astrocytic endfeet processes. Separation of the vascular compartment by centrifugation-based methods confirmed enrichment of astrocytic endfeet processes, making it possible to study the entire vascular niche with such methods. Several centrifugation-based separation protocols are found in the literature; however, with some constraints which limit their applicability and the scope of the studies. Here, we describe and validate a protocol for physically separating the neurovascular niche from the parenchyma, which is optimized for smaller tissue quantities. Using endothelial, neuronal and astrocyte markers, we show that quantitative Western blot-based target detection can be performed of both the vascular and parenchymal fractions using as little as a single mouse brain hemisphere. Validation of our protocol in rodent stroke models by detecting changes in serum albumin signals and astrocyte activation, i.e. increased glial fibrillary acidic protein expression, between the ipsilateral and the lesion-free contralateral hemisphere demonstrates this protocol as a new way of detecting BBB breakdown and astrogliosis, respectively.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2418
Author(s):  
Agnete Prydz ◽  
Katja Stahl ◽  
Soulmaz Zahl ◽  
Nadia Skauli ◽  
Øivind Skare ◽  
...  

Aquaporin-4 (AQP4) is critically involved in brain water and volume homeostasis and has been implicated in a wide range of pathological conditions. Notably, evidence has been accrued to suggest that AQP4 plays a proinflammatory role by promoting release of astrocytic cytokines that activate microglia and other astrocytes. Neuroinflammation is a hallmark of Parkinson’s disease (PD), and we have previously shown that astrocytes in substantia nigra (SN) are enriched in AQP4 relative to cortical astrocytes, and that their complement of AQP4 is further increased following treatment with the parkinsonogenic toxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). Here, we investigated the effect of Aqp4 deletion on microglial activation in mice subjected to unilateral intrastriatal injection of 1-methyl-4-phenylpyridinium (MPP+, the toxic metabolite of MPTP). Our results show that MPP+ injections lead to a pronounced increase in the expression level of microglial activating genes in the ventral mesencephalon of wild type (WT) mice, but not Aqp4−/− mice. We also show, in WT mice, that MPP+ injections cause an upregulation of nigral AQP4 and swelling of astrocytic endfeet. These findings are consistent with the idea that AQP4 plays a pro-inflammatory role in Parkinson’s disease, secondary to the dysregulation of astrocytic volume homeostasis.


2020 ◽  
Vol 21 (4) ◽  
pp. 1531
Author(s):  
Claudia Palazzo ◽  
Pasqua Abbrescia ◽  
Onofrio Valente ◽  
Grazia Paola Nicchia ◽  
Shervin Banitalebi ◽  
...  

Translational readthrough (TRT) of aquaporin-4 (AQP4) has remarkably expanded the importance of this new post-transcriptional mechanism, as well as the regulation potential of AQP4. The TRT isoform of AQP4, named AQP4ex, is central for both AQP4 polarization and water channel activity in the central nervous system (CNS). Here we evaluate the relevance of the TRT mechanism by analyzing whether AQP4ex is also expressed in peripheral tissues and whether the expression of AQP4ex is necessary for its polarized expression as it occurs in perivascular astrocyte processes. To this purpose, AQP4ex null mice were used, and analysis was performed by immunolocalization and immunoblot. The results demonstrate that AQP4ex is expressed in kidney, stomach, trachea and skeletal muscle with the same localization pattern as the canonical AQP4 isoforms. AQP4ex protein levels vary from 6% to about 13% of the total AQP4 protein levels in peripheral tissues. Immunogold electron microscopy experiments demonstrated the localization of AQP4ex at the astrocytic endfeet, and experiments conducted on AQP4ex null mice CNS confirmed that the expression of AQP4ex is necessary for anchoring of the perivascular AQP4. Without the readthrough isoform, AQP4 assemblies are mis-localized, being uniformly distributed on the astrocyte processes facing the neuropile. No alteration of AQP4 polarization was found in AQP4ex null kidney, stomach, trachea or skeletal muscle, suggesting that AQP4ex does not have a role for proper membrane localization of AQP4 in peripheral tissues. We conclude that a dual role for AQP4ex is limited to the CNS.


2019 ◽  
Vol 257 ◽  
pp. 331-339 ◽  
Author(s):  
Ilhamuddin A. Azis ◽  
Sadayuki Hashioka ◽  
Keiko Tsuchie ◽  
Tsuyoshi Miyaoka ◽  
Rostia A. Abdullah ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hideaki Kubotera ◽  
Hiroko Ikeshima-Kataoka ◽  
Yoshiki Hatashita ◽  
Anna Letizia Allegra Mascaro ◽  
Francesco Saverio Pavone ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 90 ◽  
Author(s):  
Simone Mader ◽  
Lior Brimberg

Aquaporin-4 (AQP4) is a water channel expressed on astrocytic endfeet in the brain. The role of AQP4 has been studied in health and in a range of pathological conditions. Interest in AQP4 has increased since it was discovered to be the target antigen in the inflammatory autoimmune disease neuromyelitis optica spectrum disorder (NMOSD). Emerging data suggest that AQP4 may also be implicated in the glymphatic system and may be involved in the clearance of beta-amyloid in Alzheimer’s disease (AD). In this review, we will describe the role of AQP4 in the adult and developing brain as well as its implication for disease.


Sign in / Sign up

Export Citation Format

Share Document