scholarly journals The Influence of the Intracellular Potential on Potassium Uptake by Beetroot Tissue

1966 ◽  
Vol 49 (3) ◽  
pp. 551-563 ◽  
Author(s):  
Ronald J. Poole

Intracellular potentials were measured in beetroot tissue during the steady-state uptake of K+ from various solutions. In solutions containing bicarbonate, the membrane potential becomes up to 70 mv more negative than the estimated equilibrium potential for K+. The uptake of K+ from such solutions is correlated with variations in the potential, both when the bicarbonate concentration is changed and also when the metabolic activity of the tissue is changed by washing in water for various periods. However, the estimated permeability to K+ varies from 0.4 x 10-7 to 1.5 x 10-7 cm·sec-1. It is postulated that the change of potential arises from the metabolic transport of HCO3- into the cell or H+ outwards, and that the associated uptake of K+ is partly or entirely by passive diffusion across the cell membrane. In contrast, K+ uptake from KCl solutions is not accompanied by any significant change in the membrane potential, which remains relatively close to the K+ equilibrium potential. In solutions containing both KHCO3 and KCl, it appears that an amount of K+ equal to the influx of Cl- is taken up independently of the potential, while the component of K+ uptake which is not balanced by Cl- uptake is related to the potential in the manner described. These results suggest that K+ uptake is linked to Cl- uptake in an electrically neutral active transport process.

Two barrels of double microelectrodes have been filled with different salts so that the electrophoretic injection of Na + and K + ions could be investigated in alternating sequence on the same motoneuron in the cat spinal cord. The effects of these injections on the mechanism generating the IPSP were evaluated by determining the equilibrium potential for the IPSP (the E IPSP ), i. e. the membrane potential at which the IPSP is zero. Such determinations have been made every 5 to 10 s after ion injections and have provided the most direct evidence of the ionic mechanism generating the IPSP . Comparison of the Na + and K + ion injections shows that the former injection always displaced the E IPSP much farther in the depolarizing direction and that recovery was much slower, with a half-time of 70 to 120 s, in contrast to about 20 s after the K + injection. In the discussion and evaluation of these results it was postulated that almost all of the displacement of the E IPSP in the depolarizing direction was due to the increased intracellular Cl - concentration, the (Cl - ) i . Under normal conditions a high (Cl - ) i declines by diffusional exchange across the cell membrane with a half-time of about 20 s, but this decline is much slower when the internal potassium is depleted. An explanation of this difference will be given in the following paper.


1971 ◽  
Vol 220 (6) ◽  
pp. 2067-2067
Author(s):  
A. H. Moawad ◽  
E. E. Daniel

Page 75: A. H. Moawad and E. E. Daniel. "Total contents and net movements of magnesium in the rat uterus." Page 80, column 2, line 44, involving the calculation of Vm the answer to the equation, –0.067 V, should read, "–0.012 V." Page 80, column 2, lines 49–54 should read, "The calculated magnesium equilibrum potential is less than the observed membrane potential, which is about 0.050 V. Therefore, some of the tissue magnesium may be excluded by an active transport process against an electrochemical gradient or by loose binding in the extracellular space."


1959 ◽  
Vol 196 (5) ◽  
pp. 1071-1078 ◽  
Author(s):  
Robert E. Taylor

Procaine (0.025–0.1%; pH 7.9) caused a reduction in the amount and rate of development of the early transient (sodium) and late steady state (potassium) currents which occur during a depolarizing voltage step applied to the excised, voltage clamped squid axon. Consistent results were obtained by holding the membrane potential at a hyperpolarized value prior to the applied step. No effect was seen on the resting potential, on the sodium equilibrium potential, or on the proportion of the sodium carrying system which was ‘inactive’ at any membrane potential. The blocking action of procaine is a result of the inhibition by the drug of the sodium carrying system. The effect of procaine on the potassium conductance is such as to oppose the blocking action.


1976 ◽  
Vol 67 (6) ◽  
pp. 621-638 ◽  
Author(s):  
S Hagiwara ◽  
S Miyazaki ◽  
N P Rosenthal

The kinetics of the membrane current during the anomalous or inward-going rectification of the K current in the egg cell membrane of the starfish Mediaster aequalis were analyzed by voltage clamp. The rectification has instantaneous and time-dependent components. The time-dependent increase in the K conductance for the negative voltage pulse as well as the decrease in the conductance for the positive pulse follows first-order kinetics. The steady-state conductance increases as the membrane potential becomes more negative and reaches the saturation value at about -40 mV more negative than the K equilibrium potential, V(K). The entire K conductance can be expressed by g(K).n; g g(K) represents the component for the time-independent conductance which depends on V-V(K) and [K+]o, and n is a dimensionless number (1 is greater than or equal to n is greater than or equal to 0) and determined by two rate constants which depend only on V-V(K). Cs+ does not carry any significant current through the K channel but blocks the channel at low concentration in the external medium. The blocking effect increases as the membrane potential is made more negative and the potential-dependent blocking by the external Cs+ also has instantaneous and time-dependent components.


1992 ◽  
Vol 70 (S1) ◽  
pp. S176-S180 ◽  
Author(s):  
Wolfgang Walz

Cortical mouse astrocytes in culture were impaled with two-channel microelectrodes. These mouse astrocytes have the same responses to different K+ concentrations, ouabain, and glutamate as cultured rat astrocytes, with the exception that a large barium-sensitive K+ conductance clamps the membrane potential at the K+ equilibrium potential. Glycolytic and mitochondrial inhibitors have little effect on the mouse astrocytes. Total blockade of energy metabolism leads to an irreversible, calcium-dependent depolarization, but only if applied for longer than 45 min. Increasing the extracellular K+ concentration to 60 mM increases the intracellular K+ concentration by 43 mM and the bicarbonate concentration by 22 mM and leads to a concomitant fast swelling. Together with the 20 mM increse in Cl− concentration reported in the literature this is a good indication for a Boyle- and Conway-mediated K+–anion influx with water. This influx is accomplished by the depolarization-induced opening of Cl− channels as reported in the literature. In conclusion, ischemia-like conditions have little direct, immediate impact on astrocytes. In contrast, ischemia-induced release of substances from neurones, such as K+, produces an immediate and fast response.Key words: astrocytes, energy metabolism, glial cells, ischemia, potassium channels, swelling.


1986 ◽  
Vol 251 (4) ◽  
pp. C483-C490 ◽  
Author(s):  
A. Edelman ◽  
J. Fritsch ◽  
S. Balsan

The introduction of parathyroid hormone [bPTH (1-34)], 10(-8) M, into the medium of cultured rat osteoblasts results in rapid (less than 1 min) depolarization of the osteoblast membranes. Conventional and pH-sensitive microelectrodes were used to assess the mechanism underlying this change. PTH depolarized cell membrane independently of steady-state membrane potential (Vm). Blocking K+ conductance (Ba2+) and Ca2+-dependent K+ conductance (quinine) depolarized Vm by +13.1 +/- 4.6 (n = 6) and +14.8 +/- 6.7 mV (n = 6), respectively, and both abolished the effect of PTH on Vm. The rate of depolarization was reduced in low-Ca2+ medium. PTH inhibited low Na+-induced cell hyperpolarization, but intracellular pH was not altered by hormone addition. PTH-induced depolarization occurred even when the Na+-K+ pump was blocked with ouabain. A second slower response was seen in cells having a Vm lower than -60 mV, with an increase in negativity 5-15 min after hormone application. The results indicate that PTH rapidly modifies Vm by changes of K+ conductance, which may be the first step in hormonal stimulus-response coupling, and induces delayed, long-term changes in cell status.


1986 ◽  
Vol 238 (2) ◽  
pp. 443-449 ◽  
Author(s):  
E F LaBelle ◽  
S V Singh ◽  
S K Srivastava ◽  
Y C Awasthi

Dinitrophenyl S-glutathione is accumulated by inside-out vesicles made from human erythrocytes in a process totally dependent on ATP and Mg2+. The vesicles were shown to accumulate dinitrophenyl S-glutathione against a concentration gradient. The vesicles were able to concentrate this glutathione derivative even in the absence of membrane potential. This indicated that the ATP-dependent uptake of dinitrophenyl S-glutathione by inside-out vesicles represented an active transport process. Neither extravesicular EGTA nor intravesicular ouabain inhibited the transport process, indicating that neither the Ca2+-ATPase nor the Na+, K+-ATPase were involved. These results indicated that dinitrophenyl S-glutathione uptake by inside-out vesicles probably represented primary active transport. The uptake of dinitrophenyl S-glutathione was a linear function of time (up to 5 h) and vesicle protein. The rate of uptake was optimal between pH 7.0 and 8.0 and at 37 degrees C. The Km values determined for dinitrophenyl S-glutathione and ATP were 0.29 mM and 1 mM, respectively. The transport process was completely inhibited by vanadate and by p-hydroxymercuribenzene sulphonate and inhibited to a lesser extent by N-ethylmaleimide. GTP could efficiently substitute for ATP as an energy source for the transport process, but CTP and UTP were comparatively much less effective.


1979 ◽  
Vol 35 (1) ◽  
pp. 123-138
Author(s):  
P.M. O'Day ◽  
R. Rikmenspoel

The control of bull spermatozoon flagellar activity has been investigated using direct current injection into the cells through an impaling glass microelectrode. Negative current injection results in a decrease in the flagellar frequency. Flagellar frequencies can be decreased to zero with high negative currents. This current injection response is dependent on the magnesium concentration available to the spermatozoon interior. The current injection response is nearly independent of ATP concentrations. Resistance measurements indicate that the current injection pathway has a resistance of about 200 +/− 300 k omega, and that the current flowing through the cell membrane is not exceedingly large. Measurements of the induced potentials indicate transmembrane potentials during current injection of about −35 +/− 30 mV per microA of injected current. The results are compatible with an active transport process in bull spermatozoa that controls the flagellar activity in response to current injection by decreasing the internal Mg2+ concentrations during the injection of current.


1993 ◽  
Vol 265 (4) ◽  
pp. C901-C917 ◽  
Author(s):  
R. W. Van Dyke

Both lysosomes and endosomes are acidified by an electrogenic proton pump, although studies in intact cells indicate that the steady-state internal pH (pHi) of lysosomes is more acid than that of endosomes. We undertook the present study to examine in detail the acidification mechanism of purified rat liver secondary lysosomes and to compare it with that of a population of early endosomes. Both endosomes and lysosomes exhibited ATP-dependent acidification, but proton influx rates were 2.4- to 2.7-fold greater for endosomes than for lysosomes because of differences in both buffering capacity and acidification rates, suggesting that endosomes exhibited greater numbers or rates of proton pumps. Lysosomes, however, exhibited a more acidic steady-state pHi due in part to a slower proton leak rate. Changes in medium Cl- increased acidification rates of endosomes more than lysosomes, and the lysosome ATP-dependent interior-positive membrane potential was only partially eliminated by high-Cl- medium. Permeability studies suggested that lysosomes were less permeable to Na+, Li+, and Cl- and more permeable to K+ and PO4(2-) than endosomes. Na-K-adenosine-triphosphatase did not appear to regulate acidification of either vesicle type. Endosome and lysosome acidification displayed similar inhibition profiles to N-ethylmaleimide, dicyclohexyl-carbodiimide, and vanadate, although lysosomes were somewhat more sensitive [concentration producing 50% maximal inhibition (IC50) 1 nM] to bafilomycin A1 than endosomes (IC50 7.6 nM). Oligomycin (1.5-3 microM) stimulated lysosome acidification due to shunting of membrane potential. Overall, acidification of endosomes and lysosomes was qualitatively similar but quantitatively somewhat different, possibly related to differences in the density or rate of proton pumps as well as vesicle permeability to protons, anions, and other cations.


Sign in / Sign up

Export Citation Format

Share Document