scholarly journals Calcium currents in a fast-twitch skeletal muscle of the rat.

1983 ◽  
Vol 82 (4) ◽  
pp. 449-468 ◽  
Author(s):  
P L Donaldson ◽  
K G Beam

Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially obscured by nonlinear charge movement. Nonetheless, at physiological temperatures, the rate of calcium channel activation in rat skeletal muscle is about five times faster than activation of calcium channels in frog muscle. This pathway may be an important source of calcium entry in mammalian muscle.

1989 ◽  
Vol 67 (10) ◽  
pp. 1259-1264 ◽  
Author(s):  
F. Moody-Corbett ◽  
R. Gilbert ◽  
H. Akbarali ◽  
J. Hall

We have investigated the appearance of calcium current in Xenopus muscle cells in 1- to 6-day-old cultures. Whole cell currents were recorded using a patch-clamp amplifier with sodium and potassium replaced with tetraethylammonium and cesium, respectively, and BaCl2 used in place of CaCl2. When the muscle membrane was depolarized above −30 mV, a slow inward current was activated, the current reached a peak amplitude near 0 mV, and an outward current became apparent above + 10 mV. This slow current was enhanced by adding barium or Bay K 8644 to the extracellular recording solution and was blocked by the addition of cobalt, cadmium, or the dihydropyridines nifedipine or (+)PN 200-110. Taken together these results indicate the presence of an inward calcium current mediated through L-type channels. Thirty-one percent of the cells examined on the first day in culture showed no discernible slow inward current; however, as the age of the culture increased, all cells showed slow inward current and there was an increase in the amplitude of the current. A small proportion of the muscle cells (5 out of 34) also showed a fast activating and inactivating inward current. This current, which activated at more hyperpolarized potentials (−40 mV) was only present when 5 mM ATP was included in the internal recording solution. It also appeared to be mediated through a calcium channel but not a dihydropyridine, sensitive channel.Key words: embryonic skeletal muscle, calcium current.


2020 ◽  
Author(s):  
Abdesslam Chrachri

AbstractWhole-cell patch-clamp recordings from identified centrifugal neurons of the optic lobe in a slice preparation allowed the characterization of five voltage-dependent currents; two outward and three inward currents. The outward currents were; the 4-aminopyridine-sensitive transient potassium or A-current (IA), the TEA-sensitive sustained current or delayed rectifier (IK). The inward currents were; the tetrodotoxin-sensitive transient current or sodium current (INa). The second is the cobalt- and cadmium-sensitive sustained current which is enhanced by barium and blocked by the dihydropyridine antagonist, nifedipine suggesting that it could be the L-type calcium current (ICaL). Finally, another transient inward current, also carried by calcium, but unlike the L-type, this current is activated at more negative potentials and resembles the low-voltage-activated or T-type calcium current (ICaT) of other preparations.Application of the neuropeptide FMRFamide caused a significant attenuation to the peak amplitude of both sodium and sustained calcium currents without any apparent effect on the transient calcium current. Furthermore, FMRFamide also caused a reduction of both outward currents in these centrifugal neurons. The fact that FMRFamide reduced the magnitude of four of five characterized currents could suggest that this neuropeptide may act as a strong inhibitory agent on these neurons.SummaryFMRFamide modulate the ionic currents in identified centrifugal neurons in the optic lobe of cuttlefish: thus, FMRFamide could play a key role in visual processing of these animals.


1999 ◽  
Vol 276 (3) ◽  
pp. H1064-H1077 ◽  
Author(s):  
E. Etienne Verheijck ◽  
Antoni C. G. van Ginneken ◽  
Ronald Wilders ◽  
Lennart N. Bouman

The role of L-type calcium current ( I Ca,L) in impulse generation was studied in single sinoatrial nodal myocytes of the rabbit, with the use of the amphotericin-perforated patch-clamp technique. Nifedipine, at a concentration of 5 μM, was used to block I Ca,L. At this concentration, nifedipine selectively blocked I Ca,L for 81% without affecting the T-type calcium current ( I Ca,T), the fast sodium current, the delayed rectifier current ( I K), and the hyperpolarization-activated inward current. Furthermore, we did not observe the sustained inward current. The selective action of nifedipine on I Ca,L enabled us to determine the activation threshold of I Ca,L, which was around −60 mV. As nifedipine (5 μM) abolished spontaneous activity, we used a combined voltage- and current-clamp protocol to study the effects of I Ca,L blockade on repolarization and diastolic depolarization. This protocol mimics the action potential such that the repolarization and subsequent diastolic depolarization are studied in current-clamp conditions. Nifedipine significantly decreased action potential duration at 50% repolarization and reduced diastolic depolarization rate over the entire diastole. Evidence was found that recovery from inactivation of I Ca,L occurs during repolarization, which makes I Ca,L available already early in diastole. We conclude that I Ca,L contributes significantly to the net inward current during diastole and can modulate the entire diastolic depolarization.


1998 ◽  
Vol 79 (4) ◽  
pp. 2070-2081 ◽  
Author(s):  
Laura M. Hurley ◽  
Katherine Graubard

Hurley, Laura M. and Katherine Graubard. Pharmacologically and functionally distinct calcium currents of stomatogastric neurons. J. Neurophysiol. 79: 2070–2081, 1998. Previous studies have suggested the presence of different types of calcium channels in different regions of stomatogastric neurons. We sought to pharmacologically separate these calcium channel types. We used two different preparations from different regions of stomatogastric neurons to screen a range of selective calcium channel blockers. The two preparations were isolated cell bodies in culture, in which calcium current was measured directly, and isolated neuromuscular junction, in which synaptic transmission was the indirect assay for presynaptic calcium influx. The selective blockers were two different dihydropyridines, ω-Agatoxin IVA, and ω-Conotoxin GVIA. Cultured cell bodies possessed both high-threshold calcium current and calcium-activated outward current, similar to intact neurons. The calcium current had transient and maintained components, but both components had the same voltage dependence of activation and inactivation. Dihydropyridines at ≥10 μM blocked both high-threshold calcium current and calcium-activated outward current. Nanomolar doses of ω-Agatoxin IVA did not block calcium current, but micromolar doses did. ω-Conotoxin GVIA did not block either current. In contrast, at the neuromuscular junction, dihydropyridines reduced the amplitude of postsynaptic potentials by only a modest amount, whereas ω-Agatoxin IVA at doses as low as 64 nM reduced the amplitude of postsynaptic potentials almost entirely. These effects were presynaptic. ω-Conotoxin GVIA did not change the amplitude of postsynaptic potentials. The different pharmacological profiles of the two isolated preparations suggest that there are at least two different types of calcium channel in stomatogastric neurons and that ω-Agatoxin IVA and dihydropridines can be used to pharmacologically distinguish them.


1985 ◽  
Vol 249 (1) ◽  
pp. H122-H132
Author(s):  
J. M. Jaeger ◽  
W. R. Gibbons

We have tried to answer two fundamental questions concerning the outward current IX1 of cardiac Purkinje fibers. 1) Is it possible that current changes identified as arising from IX1 in voltage-clamp experiments are actually manifestations of changes in the slow inward current (Isi); and 2) is IX1 in fact required to produce the electrical phenomena attributed to it? Isi behavior and the role of IX1 were explored using computer simulation. The Isi model produced current changes during depolarizations and hyperpolarizations from depolarized resting potentials like those attributed to IX1. It also produced a component of "tail currents" that behaved like IX1. If these current changes were analyzed, assuming that an outward current is responsible, the resulting kinetics and current voltage relation would be very similar to the kinetics and current voltage relation reported for IX1. Using the McAllister, Noble, and Tsien formulation of the Purkinje fiber action potential, we found that IX1 is not essential for repolarization of the reconstructed action potential nor is it needed to reproduce interval duration effects and the effects of applied current in that model. Data suggesting that calcium channel blockers reduce IX1 and that catecholamines increase IX1 may be explained as arising from changes in Isi. Thus many manifestations of IX1 can be explained as arising from unanticipated behavior of Isi, and IX1 does not necessarily play a key role in generating Purkinje fiber electrical activity.


1982 ◽  
Vol 79 (2) ◽  
pp. 187-209 ◽  
Author(s):  
J E Lisman ◽  
G L Fain ◽  
P M O'Day

The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.


1989 ◽  
Vol 61 (2) ◽  
pp. 302-310 ◽  
Author(s):  
M. Sawada ◽  
L. J. Cleary ◽  
J. H. Byrne

1. We have investigated how activation of the inositol lipid second messenger pathway may contribute to modulation of membrane currents in tail motor neurons of Aplysia. Specifically, we examined the effects of injected inositol 1,4,5-trisphosphate (IP3) and analogues of diacylglycerol (DAG), both of which are products of the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). 2. Injection of IP3 produced an outward current associated with an apparent increase in membrane conductance. Ion substitution experiments, the sensitivity of the response to low concentrations of TEA and its attenuation by intracellular injections of EGTA suggest that the current produced by injection of IP3 is a calcium-activated K+ current (IK,Ca). 3. The response to IP3 was mimicked by intracellular injection of Ca2+. Injection of Ca2+ produced an outward current that was associated with an apparent increase in input conductance of the membrane. The same manipulations that affected the response to IP3 (see above) also affected the response to injections of Ca2+. 4. Injections of activators of protein kinase C (PKC) produced a relatively slow inward current. The inward current has not been fully analyzed, but it does not appear to be due to the actions of any single conventional ion channel. 5. Activators of PKC attenuated responses to subsequent injections of IP3 indicating that one component of PIP2 hydrolysis can attenuate the other. 6. The results suggest that hydrolysis of inositol phospholipids is a mechanism for regulation of membrane properties in tail motor neurons of Aplysia.


1986 ◽  
Vol 250 (2) ◽  
pp. H325-H329 ◽  
Author(s):  
R. D. Nathan

Previous investigations employing multicellular nodal preparations (i.e., mixtures of dominant and subsidiary pacemaker cells) have suggested that the fast transient inward sodium current (iNa) either is not present in dominant pacemaker cells or is present but inactivated at the depolarized take-off potentials that these cells exhibit. In the present study, this question was resolved by voltage clamp analysis of single pacemaker cells isolated from the sinoatrial node and maintained in vitro for 1-3 days. Two types of cells, each with a different morphology, exhibited two modes of electrophysiological behavior. Type I cells (presumably dominant pacemakers) displayed only a tetrodotoxin (TTX)-resistant (but cadmium-sensitive) slow inward current, whereas type II cells (presumably subsidiary pacemakers) exhibited two components of inward current, a TTX-sensitive, fast transient inward current and a TTX-resistant (but cadmium-sensitive) slow inward current. Three other voltage-gated currents, 1) a slowly developing inward current activated by hyperpolarization (if, ih, delta ip), 2) a transient outward current activated by strong depolarization (ito, iA), and 3) a delayed outward current, were recorded in both types of pacemaker cells.


1991 ◽  
Vol 97 (1) ◽  
pp. 35-54 ◽  
Author(s):  
E Nasi

Voltage-dependent membrane currents were investigated in enzymatically dissociated photoreceptors of Lima scabra using the whole-cell clamp technique. Depolarizing steps to voltages more positive than -10 mV elicit a transient inward current followed by a delayed, sustained outward current. The outward current is insensitive to replacement of a large fraction of extracellular Cl- with the impermeant anion glucuronate. Superfusion with tetraethylammonium and 4-aminopyridine reversibly abolishes the outward current, and internal perfusion with cesium also suppresses it, indicating that it is mediated by potassium channels. Isolation of the inward current reveals a fast activation kinetics, the peak amplitude occurring as early as 4-5 ms after stimulus onset, and a relatively rapid, though incomplete inactivation. Within the range of voltages examined, spanning up to +90 mV, reversal was not observed. The inward current is not sensitive to tetrodotoxin at concentrations up to 10 microM, and survives replacement of extracellular Na with tetramethylammonium. On the other hand, it is completely eliminated by calcium removal from the perfusing solution, and it is partially blocked by submillimolar concentrations of cadmium, suggesting that it is entirely due to voltage-dependent calcium channels. Analysis of the kinetics and voltage dependence of the isolated calcium current indicates the presence of two components, possibly reflecting the existence of separate populations of channels. Barium and strontium can pass through these channels, though less easily than calcium. Both the activation and the inactivation become significantly more sluggish when these ions serve as the charge carrier. A large fraction of the outward current is activated by preceding calcium influx. Suppression of this calcium-dependent potassium current shows a small residual component resembling the delayed rectifier. In addition, a transient outward current sensitive to 4-aminopyridine (Ia) could also be identified. The relevance of such conductance mechanisms in the generation of the light response in Lima photoreceptors is discussed.


Sign in / Sign up

Export Citation Format

Share Document