Massive stars in the galaxy and the magellanic clouds - Clues to stellar evolution

1984 ◽  
Vol 96 ◽  
pp. 779 ◽  
Author(s):  
C. D. Garmany
2010 ◽  
Vol 6 (S272) ◽  
pp. 233-241
Author(s):  
Christopher J. Evans

AbstractOne of the challenges for stellar astrophysics is to reach the point at which we can undertake reliable spectral synthesis of unresolved populations in young, star-forming galaxies at high redshift. Here I summarise recent studies of massive stars in the Galaxy and Magellanic Clouds, which span a range of metallicities commensurate with those in high-redshift systems, thus providing an excellent laboratory in which to study the role of environment on stellar evolution. I also give an overview of observations of luminous supergiants in external galaxies out to a remarkable 6.7 Mpc, in which we can exploit our understanding of stellar evolution to study the chemistry and dynamics of the host systems.


Author(s):  
Avishai Gilkis ◽  
Tomer Shenar ◽  
Varsha Ramachandran ◽  
Adam S Jermyn ◽  
Laurent Mahy ◽  
...  

Abstract The Humphreys-Davidson (HD) limit empirically defines a region of high luminosities (log10(L/L⊙) ≳ 5.5) and low effective temperatures (Teff ≲ 20 kK) on the Hertzsprung-Russell Diagram in which hardly any supergiant stars are observed. Attempts to explain this limit through instabilities arising in near- or super-Eddington winds have been largely unsuccessful. Using modern stellar evolution we aim to re-examine the HD limit, investigating the impact of enhanced mixing on massive stars. We construct grids of stellar evolution models appropriate for the Small and Large Magellanic Clouds (SMC, LMC), as well as for the Galaxy, spanning various initial rotation rates and convective overshooting parameters. Significantly enhanced mixing apparently steers stellar evolution tracks away from the region of the HD limit. To quantify the excess of over-luminous stars in stellar evolution simulations we generate synthetic populations of massive stars, and make detailed comparisons with catalogues of cool (Teff ≤ 12.5 kK) and luminous (log10(L/L⊙) ≥ 4.7) stars in the SMC and LMC. We find that adjustments to the mixing parameters can lead to agreement between the observed and simulated red supergiant populations, but for hotter supergiants the simulations always over-predict the number of very luminous (log10(L/L⊙) ≥ 5.4) stars compared to observations. The excess of luminous supergiants decreases for enhanced mixing, possibly hinting at an important role mixing has in explaining the HD limit. Still, the HD limit remains unexplained for hotter supergiants.


2008 ◽  
Vol 4 (S256) ◽  
pp. 325-336
Author(s):  
Christopher J. Evans

AbstractThe past decade has witnessed impressive progress in our understanding of the physical properties of massive stars in the Magellanic Clouds, and how they compare to their cousins in the Galaxy. I summarise new results in this field, including evidence for reduced mass-loss rates and faster stellar rotational velocities in the Clouds, and their present-day compositions. I also discuss the stellar temperature scale, emphasizing its dependence on metallicity across the entire upper-part of the Hertzsprung-Russell diagram.


1984 ◽  
Vol 88 ◽  
pp. 375-380
Author(s):  
M. Imbert ◽  
J. Andersen ◽  
A. Ardeberg ◽  
C. Bardin ◽  
W. Benz ◽  
...  

Radii and luminosities for Cepheid variables provide fundamental information on stellar evolution. Such data, obtained by the Baade-Wesselink method, are available and have been used for a number of galactic Cepheids. It is of particular interest to obtain corresponding data for Cepheids in the Magellanic Clouds. Firstly, this allows a comparative study of stellar evolution between the Galaxy and the Magellanic Clouds. Secondly, it provides data for an independent determination of the distance to the Magellanic Clouds.Radial-velocity observations have been made for a total of around 20 Cepheid variables in both the LMC and the SMC. All measurements were made with the photoelectric scanner CORAVEL attached to the Cassegrain focus of the Danish 1.54-m telescope at European Southern Observatory, La Silla, Chile. Observations were made from January 1981 through October 1983. The accuracy of individual radial-velocity observations is of the order of 1 km s−1. The B magnitudes of the six Cepheids presented range from 13.0 to 15.5.


2007 ◽  
Vol 3 (S250) ◽  
pp. 247-256 ◽  
Author(s):  
Donald F. Figer

AbstractOver the past ten years, there has been a revolution in our understanding of massive young stellar clusters in the Galaxy. Initially, there were no known examples having masses >104, yet we now know that there are at least a half dozen such clusters in the Galaxy. In all but one case, the masses have been determined through infrared observations. Several had been identified as clusters long ago, but their massive natures were only recently determined. Presumably, we are just scratching the surface, and we might look forward to having statistically significant samples of coeval massive stars at all important stages of stellar evolution in the near future. I review the efforts that have led to this dramatic turn of events and the growing sample of young massive clusters in the Galaxy.


2008 ◽  
Vol 4 (S256) ◽  
pp. 337-342
Author(s):  
Raphael Hirschi ◽  
Sylvia Ekström ◽  
Cyril Georgy ◽  
Georges Meynet ◽  
André Maeder

AbstractThe Magellanic Clouds are great laboratories to study the evolution of stars at two metallicities lower than solar. They provide excellent testbeds for stellar evolution theory and in particular for the impact of metallicity on stellar evolution. It is important to test stellar evolution models at metallicities lower than solar in order to use the models to predict the evolution and properties of the first stars. In these proceedings, after recalling the effects of metallicity, we present stellar evolution models including the effects of rotation at the Magellanic Clouds metallicities. We then compare the models to various observations (ratios of sub-groups of massive stars and supernovae, nitrogen surface enrichment and gamma-ray bursts) and show that the models including the effects of rotation reproduce most of the observational constraints.


1984 ◽  
Vol 108 ◽  
pp. 145-156
Author(s):  
Roberta M. Humphreys

The brightest stars always receive considerable attention in observational astronomy, but why are we so interested in these most luminous, and therefore most massive stars? These stars are our first probes for exploring the stellar content of distant galaxies. Admittedly, they are only the tip of the iceberg for the whole stellar population and very interesting processes are occurring among the less massive, older stars, but the most massive stars are our first indicators for studies of stellar evolution in other galaxies. They provide the first hint that stellar evolution may have been different in a particular galaxy because they evolve so quickly. The most luminous stars also highly influence their environments via their strong stellar winds and mass loss and eventually as supernovae.


2010 ◽  
Vol 6 (S272) ◽  
pp. 300-301
Author(s):  
Christophe Martayan ◽  
Dietrich Baade ◽  
Juan Zorec ◽  
Yves Frémat ◽  
Juan Fabregat ◽  
...  

AbstractAt low metallicity B-type stars rotate faster than at higher metallicity, typically in the SMC. As a consequence, a larger number of fast rotators is expected in the SMC than in the Galaxy, in particular more Be/Oe stars. With the ESO-WFI in its slitless mode, we examined the SMC open clusters and found an occurence of Be stars 3 to 5 times larger than in the Galaxy. The evolution of the angular rotational velocity seems to be the main key on the understanding of the specific behaviour and stellar evolution of such stars at different metallicities. With the results of this WFI study and using observational clues on the SMC WR stars and massive stars, as well as the theoretical indications of long gamma-ray burst progenitors, we identify the low metallicity massive Be and Oe stars as potential LGRB progenitors. Therefore the expected rates and numbers of LGRB are calculated and compared to the observed ones, leading to a good probability that low metallicity Be/Oe stars are actually LGRB progenitors.


Sign in / Sign up

Export Citation Format

Share Document