Velocity Fields in the Solar Atmosphere. III. Large-Scale Motions, the Chromospheric Network, and Magnetic Fields.

1964 ◽  
Vol 140 ◽  
pp. 1120 ◽  
Author(s):  
G. W. Simon ◽  
R. B. Leighton
Author(s):  
Robert Erdélyi

Can the ubiquitously magnetic solar atmosphere have any effect on solar global oscillations? Traditionally, solar atmospheric magnetic fields are considered to be somewhat less important for the existence and characteristic features of solar global oscillations ( p , f and the not-yet-observed g -modes). In this paper, I demonstrate the importance of the presence of magnetism and plasma dynamics for global resonant oscillations in the solar atmosphere. In particular, in the lower part of the solar atmosphere there are both coherent and random components of magnetic fields and velocity fields, each of which contribute on its own to the line widths and frequency variations of solar global acoustic waves. Changes in the coherent large-scale atmospheric magnetic fields cause frequency shifts of global oscillations over a solar cycle. The random character of the continuously emerging, more localized, magnetic carpet (i.e. small-scale, possibly even sub-resolution, loops) gives rise to additional frequency shifts. On the other hand, random and organized surface and sub-surface flows, like surface granulation, meridional flows or differential rotation, also affect the coupling mechanism of global oscillations to the lower magnetic atmosphere. The competition between magnetic fields and flows is inevitable. Finally, I shall discuss how solar global oscillations can resonantly interact with the overlaying inhomogeneous lower solar atmosphere embedded in a magnetic carpet. Line width broadening and distorsion of global acoustic modes will be discussed. The latter is suggested to be tested and measured by using ring-analysis techniques.


2008 ◽  
Vol 4 (S259) ◽  
pp. 231-232
Author(s):  
Mikhail L. Demidov

AbstractComparison of magnetic fields measurements made in different spectral lines and observatories is an important tool for diagnostics of magnetohydrodynamic conditions in the solar atmosphere. But there is a deficit of information about the dependence of results on detailed position on the solar disk, spatial resolution and time. In this study these issues are discussed in application to the solar large-scale and Sun-as-a-star magnetic fields observations.


Solar Physics ◽  
1971 ◽  
Vol 16 (1) ◽  
pp. 21-36 ◽  
Author(s):  
Robert Howard

1993 ◽  
Vol 157 ◽  
pp. 147-151
Author(s):  
Dale M. Barker ◽  
David Moss

We present calculations showing how stable nonaxisymmetric magnetic fields may be excited in an alpha-quenched mean field dynamo in a deep spherical shell. The large scale velocity fields (differential rotation, meridional circulation) are determined by solving the axisymmetric Navier-Stokes equation, neglecting the Lorentz force but including a term parameterizing the turbulent Reynolds stresses.


2010 ◽  
Vol 6 (S273) ◽  
pp. 256-260
Author(s):  
Jörn Warnecke ◽  
Axel Brandenburg

AbstractMagnetic buoyancy is believed to drive the transport of magnetic flux tubes from the convection zone to the surface of the Sun. The magnetic fields form twisted loop-like structures in the solar atmosphere. In this paper we use helical forcing to produce a large-scale dynamo-generated magnetic field, which rises even without magnetic buoyancy. A two layer system is used as computational domain where the upper part represents the solar atmosphere. Here, the evolution of the magnetic field is solved with the stress–and–relax method. Below this region a magnetic field is produced by a helical forcing function in the momentum equation, which leads to dynamo action. We find twisted magnetic fields emerging frequently to the outer layer, forming arch-like structures. In addition, recurrent plasmoid ejections can be found by looking at space–time diagrams of the magnetic field. Recent simulations in spherical coordinates show similar results.


1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


Sign in / Sign up

Export Citation Format

Share Document