Large-Scale Velocity Fields and Small-Scale Magnetic Fields During the Maximum of Solar Cycle 22

Author(s):  
Sara F. Martin ◽  
K. L. Harvey
1975 ◽  
Vol 67 (3) ◽  
pp. 417-443 ◽  
Author(s):  
W. V. R. Maekus ◽  
M. R. E. Proctor

Past study of the large-scale consequences of forced small-scale motions in electrically conducting fluids has led to the ‘α-effect’ dynamos. Various linear kinematic aspects of these dynamos have been explored, suggesting their value in the interpretation of observed planetary and stellar magnetic fields. However, large-scale magnetic fields with global boundary conditions can not be force free and in general will cause large-scale motions as they grow. I n this paper the finite amplitude behaviour of global magnetic fields and the large-scale flows induced by them in rotating systems is investigated. In general, viscous and ohmic dissipative mechanisms both play a role in determining the amplitude and structure of the flows and magnetic fields which evolve. In circumstances where ohmic loss is the principal dissipation, it is found that determination of a geo- strophic flow is an essential part of the solution of the basic stability problem. Nonlinear aspects of the theory include flow amplitudes which are independent of the rotation and a total magnetic energy which is directly proportional to the rotation. Constant a is the simplest example exhibiting the various dynamic balances of this stabilizing mechanism for planetary dynamos. A detailed analysis is made for this case to determine the initial equilibrium of fields and flows in a rotating sphere.


2004 ◽  
Vol 22 (1) ◽  
pp. 183-212 ◽  
Author(s):  
S. Savin ◽  
L. Zelenyi ◽  
S. Romanov ◽  
I. Sandahl ◽  
J. Pickett ◽  
...  

Abstract. We advance the achievements of Interball-1 and other contemporary missions in exploration of the magnetosheath-cusp interface. Extensive discussion of published results is accompanied by presentation of new data from a case study and a comparison of those data within the broader context of three-year magnetopause (MP) crossings by Interball-1. Multi-spacecraft boundary layer studies reveal that in ∼80% of the cases the interaction of the magnetosheath (MSH) flow with the high latitude MP produces a layer containing strong nonlinear turbulence, called the turbulent boundary layer (TBL). The TBL contains wave trains with flows at approximately the Alfvén speed along field lines and "diamagnetic bubbles" with small magnetic fields inside. A comparison of the multi-point measurements obtained on 29 May 1996 with a global MHD model indicates that three types of populating processes should be operative: large-scale (∼few RE) anti-parallel merging at sites remote from the cusp; medium-scale (few thousandkm) local TBL-merging of fields that are anti-parallel on average; small-scale (few hundredkm) bursty reconnection of fluctuating magnetic fields, representing a continuous mechanism for MSH plasma inflow into the magnetosphere, which could dominate in quasi-steady cases. The lowest frequency (∼1–2mHz) TBL fluctuations are traced throughout the magnetosheath from the post-bow shock region up to the inner magnetopause border. The resonance of these fluctuations with dayside flux tubes might provide an effective correlative link for the entire dayside region of the solar wind interaction with the magnetopause and cusp ionosphere. The TBL disturbances are characterized by kinked, double-sloped wave power spectra and, most probably, three-wave cascading. Both elliptical polarization and nearly Alfvénic phase velocities with characteristic dispersion indicate the kinetic Alfvénic nature of the TBL waves. The three-wave phase coupling could effectively support the self-organization of the TBL plasma by means of coherent resonant-like structures. The estimated characteristic scale of the "resonator" is of the order of the TBL dimension over the cusps. Inverse cascades of kinetic Alfvén waves are proposed for forming the larger scale "organizing" structures, which in turn synchronize all nonlinear cascades within the TBL in a self-consistent manner. This infers a qualitative difference from the traditional approach, wherein the MSH/cusp interaction is regarded as a linear superposition of magnetospheric responses on the solar wind or MSH disturbances. Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers) – Space plasma physics (turbulence; nonlinear phenomena)


2007 ◽  
Vol 25 (5) ◽  
pp. 1183-1197 ◽  
Author(s):  
M. L. Parkinson ◽  
R. C. Healey ◽  
P. L. Dyson

Abstract. Multi-scale structure of the solar wind in the ecliptic at 1 AU undergoes significant evolution with the phase of the solar cycle. Wind spacecraft measurements during 1995 to 1998 and ACE spacecraft measurements during 1997 to 2005 were used to characterise the evolution of small-scale (~1 min to 2 h) fluctuations in the solar wind speed vsw, magnetic energy density B2, and solar wind ε parameter, in the context of large-scale (~1 day to years) variations. The large-scale variation in ε most resembled large-scale variations in B2. The probability density of large fluctuations in ε and B2 both had strong minima during 1995, a familiar signature of solar minimum. Generalized Structure Function (GSF) analysis was used to estimate inertial range scaling exponents aGSF and their evolution throughout 1995 to 2005. For the entire data set, the weighted average scaling exponent for small-scale fluctuations in vsw was aGSF=0.284±0.001, a value characteristic of intermittent MHD turbulence (>1/4), whereas the scaling exponents for corresponding fluctuations in B2 and ε were aGSF=0.395±0.001 and 0.334±0.001, respectively. These values are between the range expected for Gaussian fluctuations (1/2) and Kolmogorov turbulence (1/3). However, the scaling exponent for ε changed from a Gaussian-Kolmogorov value of 0.373±0.005 during 1997 (end of solar minimum) to an MHD turbulence value of 0.247±0.004 during 2003 (recurrent fast streams). Changes in the characteristics of solar wind turbulence may be reproducible from one solar cycle to the next.


1997 ◽  
Vol 163 ◽  
pp. 190-200
Author(s):  
Christopher A. Tout

AbstractWe review those processes associated with accretion discs that are probably influenced by magnetic fields, specifically, accretiondisc viscosity, energy dissipation and jet formation. We consider how magnetic instabilities in the disc can lead to a self-sustaining dynamical dynamo and how this is manifested as magnetohydrodynamic turbulence in numerical simulations. We show that currently these models do not fit with observational constraints imposed by dwarf-nova outbursts. We also show that the drop in ionisation fraction does not lead to the apparently necessary drop in viscosity in quiescent cataclysmic variable discs. Large-scale magnetic fields are required to launch and collimate jets form discs. We describe an inverse cascade process that can construct sufficient large-scale field from small-scale field generated by a dynamo.


2019 ◽  
Vol 630 ◽  
pp. A99 ◽  
Author(s):  
A. Lavail ◽  
O. Kochukhov ◽  
G. A. J. Hussain

Aims. In this paper, we aim to characterise the surface magnetic fields of a sample of eight T Tauri stars from high-resolution near-infrared spectroscopy. Some stars in our sample are known to be magnetic from previous spectroscopic or spectropolarimetric studies. Our goals are firstly to apply Zeeman broadening modelling to T Tauri stars with high-resolution data, secondly to expand the sample of stars with measured surface magnetic field strengths, thirdly to investigate possible rotational or long-term magnetic variability by comparing spectral time series of given targets, and fourthly to compare the magnetic field modulus ⟨B⟩ tracing small-scale magnetic fields to those of large-scale magnetic fields derived by Stokes V Zeeman Doppler Imaging (ZDI) studies. Methods. We modelled the Zeeman broadening of magnetically sensitive spectral lines in the near-infrared K-band from high-resolution spectra by using magnetic spectrum synthesis based on realistic model atmospheres and by using different descriptions of the surface magnetic field. We developped a Bayesian framework that selects the complexity of the magnetic field prescription based on the information contained in the data. Results. We obtain individual magnetic field measurements for each star in our sample using four different models. We find that the Bayesian Model 4 performs best in the range of magnetic fields measured on the sample (from 1.5 kG to 4.4 kG). We do not detect a strong rotational variation of ⟨B⟩ with a mean peak-to-peak variation of 0.3 kG. Our confidence intervals are of the same order of magnitude, which suggests that the Zeeman broadening is produced by a small-scale magnetic field homogeneously distributed over stellar surfaces. A comparison of our results with mean large-scale magnetic field measurements from Stokes V ZDI show different fractions of mean field strength being recovered, from 25–42% for relatively simple poloidal axisymmetric field topologies to 2–11% for more complex fields.


Author(s):  
Robert Erdélyi

Can the ubiquitously magnetic solar atmosphere have any effect on solar global oscillations? Traditionally, solar atmospheric magnetic fields are considered to be somewhat less important for the existence and characteristic features of solar global oscillations ( p , f and the not-yet-observed g -modes). In this paper, I demonstrate the importance of the presence of magnetism and plasma dynamics for global resonant oscillations in the solar atmosphere. In particular, in the lower part of the solar atmosphere there are both coherent and random components of magnetic fields and velocity fields, each of which contribute on its own to the line widths and frequency variations of solar global acoustic waves. Changes in the coherent large-scale atmospheric magnetic fields cause frequency shifts of global oscillations over a solar cycle. The random character of the continuously emerging, more localized, magnetic carpet (i.e. small-scale, possibly even sub-resolution, loops) gives rise to additional frequency shifts. On the other hand, random and organized surface and sub-surface flows, like surface granulation, meridional flows or differential rotation, also affect the coupling mechanism of global oscillations to the lower magnetic atmosphere. The competition between magnetic fields and flows is inevitable. Finally, I shall discuss how solar global oscillations can resonantly interact with the overlaying inhomogeneous lower solar atmosphere embedded in a magnetic carpet. Line width broadening and distorsion of global acoustic modes will be discussed. The latter is suggested to be tested and measured by using ring-analysis techniques.


Author(s):  
Robert Cameron

The solar dynamo is the action of flows inside the Sun to maintain its magnetic field against Ohmic decay. On small scales the magnetic field is seen at the solar surface as a ubiquitous “salt-and-pepper” disorganized field that may be generated directly by the turbulent convection. On large scales, the magnetic field is remarkably organized, with an 11-year activity cycle. During each cycle the field emerging in each hemisphere has a specific East–West alignment (known as Hale’s law) that alternates from cycle to cycle, and a statistical tendency for a North-South alignment (Joy’s law). The polar fields reverse sign during the period of maximum activity of each cycle. The relevant flows for the large-scale dynamo are those of convection, the bulk rotation of the Sun, and motions driven by magnetic fields, as well as flows produced by the interaction of these. Particularly important are the Sun’s large-scale differential rotation (for example, the equator rotates faster than the poles), and small-scale helical motions resulting from the Coriolis force acting on convective motions or on the motions associated with buoyantly rising magnetic flux. These two types of motions result in a magnetic cycle. In one phase of the cycle, differential rotation winds up a poloidal magnetic field to produce a toroidal field. Subsequently, helical motions are thought to bend the toroidal field to create new poloidal magnetic flux that reverses and replaces the poloidal field that was present at the start of the cycle. It is now clear that both small- and large-scale dynamo action are in principle possible, and the challenge is to understand which combination of flows and driving mechanisms are responsible for the time-dependent magnetic fields seen on the Sun.


2017 ◽  
Vol 13 (S336) ◽  
pp. 285-286
Author(s):  
Daria Dall’Olio ◽  
W. H. T. Vlemmings ◽  
G. Surcis ◽  
H. Beuther ◽  
B. Lankhaar ◽  
...  

AbstractTheoretical simulations have shown that magnetic fields play an important role in massive star formation: they can suppress fragmentation in the star forming cloud, enhance accretion via disc and regulate outflows and jets. However, models require specific magnetic configurations and need more observational constraints to properly test the impact of magnetic fields. We investigate the magnetic field structure of the massive protostar IRAS18089-1732, analysing 6.7 GHz CH3OH maser MERLIN observations. IRAS18089-1732 is a well studied high mass protostar, showing a hot core chemistry, an accretion disc and a bipolar outflow. An ordered magnetic field oriented around its disc has been detected from previous observations of polarised dust. This gives us the chance to investigate how the magnetic field at the small scale probed by masers relates to the large scale field probed by the dust.


Sign in / Sign up

Export Citation Format

Share Document