Supernova: The Result of the Death Spiral of a White Dwarf into a Red Giant

1974 ◽  
Vol 188 ◽  
pp. 149 ◽  
Author(s):  
W. M. Sparks ◽  
T. P. Stecher
Keyword(s):  
1986 ◽  
Vol 64 (4) ◽  
pp. 520-522 ◽  
Author(s):  
E. R. Seaquist ◽  
A. R. Taylor

We present observations that show that the symbiotic star CH Cygni recently underwent a strong radio outburst that produced a radio-emitting thermal jet. The jet is two-sided and is expanding lengthwise at an observed rate (end to end) of 1 arcsec/year, corresponding to a transverse velocity of 1100 km∙s−1 in each direction. The electron density on January 22, 1985 exceeded 2 × 106 cm−3, and the mass of the (ionized) gas exceeded [Formula: see text]. The emergence of the jet coincided with a decline in the visual luminosity of [Formula: see text].The data are consistent with a jet produced by supercritical accretion in a binary containing a red giant and a [Formula: see text] white dwarf. The discovery of a jet in such a system provides confirming evidence of the role played by accretion in determining the optical and radio properties of this system. It is also the first expanding jet found to be associated with an evolved stellar object.


1979 ◽  
Vol 53 ◽  
pp. 285-289 ◽  
Author(s):  
M. Y. Fujimoto ◽  
D. Sugimoto

When gas is accreted onto a carbon-oxygen white dwarf, a hydrogen shell-flash is triggered. Recently such phenomena are studied by many authors in relation to nova explosions and rekindling of white dwarfs. Unless all of the accreted gas is ejected by the process of the nova, a helium zone is formed as a result of hydrogen shell-burning. As the hydrogen shell-flashes recur many times, the helium zone grows gradually in mass. Then the helium shell-flash will be ignited as in the deep interior of ordinary red giant stars. We have investigated such process, simulating it by helium accretion at a constant rate. In the present paper we show that the helium shell-flashes result in a variety of strengths depending upon situations.


2011 ◽  
Vol 7 (S281) ◽  
pp. 162-165 ◽  
Author(s):  
J. Mikołajewska

AbstractSymbiotic stars are interacting binaries in which the first-formed white dwarf accretes and burns material from a red giant companion. This paper aims at presenting physical characteristics of these objects and discussing their possible link with progenitors of Type Ia supernovae.


2008 ◽  
Vol 25 (4) ◽  
pp. 155-160 ◽  
Author(s):  
G. Angelou ◽  
J. Lattanzio

AbstractRecent work has proposed that a merger event between a red-giant and a He white dwarf may be responsible for the production of R stars (Izzard, Jeffery & Lattanzio 2007). We investigate the proposed evolution and nucleosynthesis of such a model. We simulate the hypothesized late ignition of the core flash by increasing neutrino losses until ignition occurs sufficiently far from the centre that the subsequent evolution produces carbon dredge-up to the extent that the post-flash object is a carbon star. Detailed nucleosynthesis is performed within this approximation and we show that the overall properties are broadly consistent with the observations. Details will depend on the dynamics of the merger event.


2009 ◽  
Vol 5 (H15) ◽  
pp. 47-60
Author(s):  
María Teresa Ruiz

AbstractHistorically, low luminosity stars have attracted very little attention, in part because they are difficult to see except with large telescopes, however, by neglecting to study them we are leaving out the vast majority of stars in the Universe. Low mass stars evolve very slowly, it takes them trillions of years to burn their hydrogen, after which, they just turn into a He white dwarf, without ever going through the red giant phase. This lack of observable evolution partly explains the lack of interest in them. The search for the “missing mass” in the galactic plane turned things around and during the 60s and 70s the search for large M/L objects placed M-dwarfs and cool WDs among objects of astrophysical interest. New fields of astronomical research, like BDs and exoplanets appeared as spin-offs from efforts to find the “missing mass”. The search for halo white dwarfs, believed to be responsible for the observed microlensing events, is pursued by several groups. The progress in these last few years has been tremendous, here I present highlights some of the great successes in the field and point to some of the still unsolved issues.


2021 ◽  
Vol 651 ◽  
pp. L12
Author(s):  
Brett M. Morris ◽  
Kevin Heng ◽  
Alexis Brandeker ◽  
Andrew Swan ◽  
Monika Lendl

White dwarf spectroscopy shows that nearly half of white dwarf atmospheres contain metals that must have been accreted from planetary material that survived the red giant phases of stellar evolution. We can use metal pollution in white dwarf atmospheres as flags, signalling recent accretion, in order to prioritize an efficient sample of white dwarfs to search for transiting material. We present a search for planetesimals orbiting six nearby white dwarfs with the CHaracterising ExOPlanet Satellite (CHEOPS). The targets are relatively faint for CHEOPS, 11 mag < G < 12.8 mag. We used aperture photometry data products from the CHEOPS mission as well as custom point-spread function photometry to search for periodic variations in flux due to transiting planetesimals. We detect no significant variations in flux that cannot be attributed to spacecraft systematics, despite reaching a photometric precision of < 2 ppt in 60 s exposures on each target. We simulate observations to show that the small survey is sensitive primarily to Moon-sized transiting objects with periods between 3 h < P < 10 h, with radii of R ≳ 1000 km.


1989 ◽  
Vol 106 ◽  
pp. 223-223
Author(s):  
H.M.J. Boffin

Ba II stars are red giants showing an enhancement of carbon and s-process elements. The elucidation of their nature seems to require a mass transfer, either by wind or Roche lobe overflow, during their past evolution. Were it really the case, all Ba II stars would be binaries with a white dwarf as companion. To better understand the exact role of their binarity, more orbits are definitely needed. They can be obtained by monitoring the radial velocity variations of those stars. However, a quicker way to find new Ba II stars with orbital elements would be to search for their existence among known spectroscopic binaries. This would also crucially test whether mass transfer is a necessary and sufficient condition to explain Ba II stars. If it is indeed the case, then all spectroscopic binaries, made of a giant and a white dwarf, in a reasonable range of periods, would exhibit the Ba II pecularity. However, the discovery of a peculiar giant+main sequence binary system would imply a revision of our ideas about Ba II stars. To this end have we begun a systematic spectral survey of spectroscopic binaries with orbital periods in the range characteristic of known Ba II stars and containing a red giant. The realization that some stars of the catalogue we compiled were already identified as semibariium stars encourages us to pursue our investigation. Coude spectra were taken with the 152 cm telescope, at a dispersion of 12 Å mm−1 . Until now, 2 stars out of a sample of 31 present a slight enhancement of s-process elements (their anomaly being in the range Ba 0.3 to 0.5), and 2 more appear to be good candidates. The study of a larger sample is currently in progress. A discussion of the nature of the companion to the 2 newly discovered semibarium stars is presented on grounds of their mass function and photometric indices.


2012 ◽  
Vol 750 (1) ◽  
pp. 5 ◽  
Author(s):  
Mariko Kato ◽  
Joanna Mikołajewska ◽  
Izumi Hachisu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document