Neutral hydrogen in isolated galaxies - First results for five early-type systems

1980 ◽  
Vol 240 ◽  
pp. L87 ◽  
Author(s):  
M. P. Haynes ◽  
R. Giovanelli
2006 ◽  
Vol 2 (S235) ◽  
pp. 88-89
Author(s):  
Dalia Chakrabarty

The estimation of the distribution of the total (luminous and dark) mass in early type systems is hard! Even for the lucky few systems for which kinematic information is available, its implementation is mired in problems, given uncertainties about the assumptions that enter the calculations; the most critical of such assumptions involve considerations of the system geometry and the shape of its velocity ellipsoid. This work offers an independent means of getting to the mass distributions of early type galaxies, without relying directly on the phase space distribution function. The methodology is based upon the well established idea that in elliptical galaxies, the largest variations in normalised velocity dispersion profiles occur typically at R < 0.5Re (Re≡ half-light radius) and at R ≥ 2Re.


2000 ◽  
Vol 174 ◽  
pp. 187-196
Author(s):  
Trevor J. Ponman ◽  
Ed Lloyd-Davies ◽  
Stephen F. Helsdon

AbstractThe study of the relationship between the hot gas in groups and the galaxies they contain can help to constrain the evolution of both galaxies and groups. Here we present evidence that the intergalactic medium in groups has been strongly affected by preheating associated with galaxy formation which mostly preceded group collapse. The presence of this effect appears to be unrelated to the morphology of group galaxies, which supports models in which galaxy types are not primordial. We also present preliminary evidence that early-type galaxies in groups are not underluminous in the X-ray compared to isolated galaxies, suggesting that their dark halos may not have been substantially stripped.


1972 ◽  
Vol 44 ◽  
pp. 12-36 ◽  
Author(s):  
Morton S. Roberts

A general review is given of the content and distribution of interstellar gas within galaxies. The constancy of the ratio N(He)/N(H), independent of galaxy type (spirals and irregulars), is discussed and the possible mechanisms for this constancy are considered. The helium abundance does not vary across the disk of spirals, although nitrogen and possibly other elements do.The gross features of the neutral hydrogen distribution in our Galaxy and other systems are described. In spirals, the peak of the radial distribution of Hi is located well away from the optical center. This is not the case for irregular-type systems. A possible correlation of the relative location of the maxima of Hi and Hii distributions with galaxy type is described. Many spirals studied with high enough relative angular resolution show concentrations of Hi in their outermost regions. These may be due to hydrogen companions or warps in the hydrogen plane. Hydrogen ‘bridges’ are described and a new example for the triple system M81–M82–NGC 3077 is given. This latter case may be an extreme example of distortion by companion galaxies of the Hi associated with a massive galaxy.The neutral hydrogen content of a galaxy and its correlation with other integral properties is discussed. The absorption profile due to hydrogen associated with the radio galaxy Centaurus A is given. Comparison of optical and 21-cm measurements of galaxian redshifts shows excellent agreement over the radical velocity range −400 to + 5200 km s−1. There is, however, a systematic difference between 21 cm and optical redshifts over the range ∼ 1200 to ∼ 2400 km s−1 for optical values based on blue-sensitive spectra. The difference, ∼ 100 km s−1, is most likely due to blending of galaxian and night sky H and K absorption lines. The Hubble Constant is derived from a redshift-21 cm flux relation. Values in the range 78 to 109 km s−1 Mpc−1 are derived. A value of 97 kms−1 Mpc−1 is favored.


2020 ◽  
Vol 493 (3) ◽  
pp. 4045-4057 ◽  
Author(s):  
T Jayasinghe ◽  
K Z Stanek ◽  
C S Kochanek ◽  
B J Shappee ◽  
M H Pinsonneault ◽  
...  

ABSTRACT We characterize ${\sim } 71\, 200$ W Ursae Majoris (UMa) type (EW) contact binaries, including ${\sim } 12\, 600$ new discoveries, using All-Sky Automated Survey for SuperNovae (ASAN-SN)V-band all-sky light curves along with archival data from Gaia, 2MASS, AllWISE, LAMOST, GALAH, RAVE, and APOGEE. There is a clean break in the EW period–luminosity relation at $\rm \log (\it P/{\rm d})\,{\simeq }\,{\rm -0.30}$, separating the longer period, early-type EW binaries from the shorter period, late-type systems. The two populations are even more cleanly separated in the space of period and effective temperature, by $T_{\rm eff}=6710\,{\rm K}-1760\,{\rm K}\, \log (P/0.5\,{\rm d})$. Early-type and late-type EW binaries follow opposite trends in Teff with orbital period. For longer periods, early-type EW binaries are cooler, while late-type systems are hotter. We derive period–luminosity relationships in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands for the late-type and early-type EW binaries separated by both period and effective temperature, and by period alone. The dichotomy of contact binaries is almost certainly related to the Kraft break and the related changes in envelope structure, winds, and angular momentum loss.


2011 ◽  
Vol 7 (S284) ◽  
pp. 500-507
Author(s):  
Jay Gallagher ◽  
Carol Lonsdale ◽  
Gustavo Bruzual

If galaxies consisted only of stars, and some early-type systems in general and dwarf spheroidal galaxies in particular fit this prescription, then the calculation of the SED in principle is straightforward. The emergent luminosity at any wavelength simply is the sum over all the luminosities of all the stars in the system. This can be calculated, of course provided that one has a complete understanding of stellar populations, which remains a non-trivial issue. Most galaxies, however, also contain an interstellar medium (ISM). The ISM absorbs, scatters and reprocesses the radiation and relativistic particles from sources within galaxies, primarily stars and AGN. That the ISM is neither isotropic nor homogeneous adds to the challenge of how to properly account for its influence on the luminosity emerging from galaxies.


2016 ◽  
Vol 11 (S321) ◽  
pp. 279-279
Author(s):  
Mustafa K. Yıldız ◽  
Paolo Serra ◽  
Reynier F. Peletier ◽  
Tom A. Oosterloo ◽  
Pierre-Alain Duc

AbstractContextAccording to the ATLAS3D project, about 20 percent of all nearby early-type galaxies (D < 42 Mpc; MK < -21.5 mag; stellar mass Mstars ≳ 6 × 109 M⊙) outside clusters are surrounded by a disc or ring of low-column-density neutral hydrogen (Hi) gas with typical radii of tens of kpc, much larger than the stellar body.AimsOur aim is to understand the impact of these gas systems on the host galaxies, in particular, whether there is any recent star formation related to the Hi and effect of recent star formation on the host early-type galaxies.Methods and sampleWe analyse the distribution of star formation out to large radii by using resolved Hi images together with UV and optical images. We calculate the UV-UV and UV-optical colours in two apertures, 1-3 and 3-10 Reff. Using FUV emission as a proxy for star formation, we also estimate the integrated star formation rate in the outer regions. Our sample consists of 18 Hi-rich galaxies as well as 55 control galaxies where no Hi has been detected. We select the control sample galaxies to match the Hi-rich galaxies in stellar mass, environment, distance and stellar kinematics.ResultsIn half of the Hi-rich galaxies the radial UV profile changes slope at the position of the Hi radial profile peak. We find that the FUV-NUV and UV-optical colours in the first and second apertures of the Hi-rich galaxies are on average 0.5 and 0.8 mag bluer than the Hi-poor ones, respectively. We also find that the Hi-rich early-type galaxies have colour gradients that are almost 2 times stronger than the Hi-poor ones. we estimate the integrated star formation rate in the outer regions (R > 1 Reff) to be on average ~ 6.1×10−3 M⊙ yr−1 for the Hi-rich galaxies. We find that the gas depletion time in the outermost region (3-10 Reff) is ~ 80 Gyrs, which is similar to that estimated for the outskirts of spirals.ConclusionsStudying the stellar populations in early type galaxies with and without Hi, we find that galaxies with Hi generally show UV and UV-Optical colours in the outer parts that are bluer than those of early-type galaxies without Hi. This shows that the Hi is actively involved in recent star formation. The star formation rate in the outer regions is too low to build a stellar disc, and therefore change the morphology of the host even when integrated over several Gyrs. Star formation in outermost regions does not depend on the type of the galaxies.


2021 ◽  
Vol 76 (2) ◽  
pp. 132-145
Author(s):  
V. E. Karachentseva ◽  
I. D. Karachentsev ◽  
O. V. Melnyk

Sign in / Sign up

Export Citation Format

Share Document