A Comparative Analysis of the Upper Thermal Tolerance Limits of Eastern Pacific Porcelain Crabs, Genus Petrolisthes: Influences of Latitude, Vertical Zonation, Acclimation, and Phylogeny

2000 ◽  
Vol 73 (2) ◽  
pp. 200-208 ◽  
Author(s):  
Jonathon H. Stillman ◽  
George N. Somero
1972 ◽  
Vol 29 (8) ◽  
pp. 1107-1112 ◽  
Author(s):  
J. Howard McCormick ◽  
Kenneth E. F. Hokanson ◽  
Bernard R. Jones

Instantaneous rates of growth, mortality, and net biomass gain were determined for alevin through juvenile brook trout reared for 8 weeks at six constant temperatures: 7.1, 9.8, 12.4, 15.4, 17.9, and 19.5 C. Growth rates were maximum between 12.4 and 15.4 C. Mortality rates increased between 15.4 and 17.9 C and were maximum between 17.9 and 19.5 C. The net rates of biomass gain were maximum between 12.4 and 15.4 C.Median upper thermal tolerance limits (TL50 values) were determined for newly hatched and swim-up alevins. Tolerance did not increase in newly hatched alevins with acclimation to temperatures from 2.5 to 12 C. The upper 7-day TL50 for newly hatched alevins acclimated over this range of temperatures was 20.1 C. The swim-up alevins showed both an increase in temperature tolerance with acclimation temperatures between 7.5 and 12 C and an increase in tolerance over that of the newly hatched alevins at comparable acclimation temperatures. The ultimate 7-day TL50 of swim-up alevins was 24.5 C. Swim-up alevins exceed newly hatched alevins in thermal tolerance by 2.0–4.5 C, depending on the temperature of acclimation. The TL50 of newly hatched alevins of comparable acclimation (12 C) is reduced by about 2 C when the exposure time is increased from 1 to 7 days.


2021 ◽  
Vol 96 ◽  
pp. 102856
Author(s):  
Marco Katzenberger ◽  
Helder Duarte ◽  
Rick Relyea ◽  
Juan Francisco Beltrán ◽  
Miguel Tejedo

2021 ◽  
pp. 103022
Author(s):  
Sonya K. Auer ◽  
Emily Agreda ◽  
Angela Chen ◽  
Madiha Irshad ◽  
Julia Solowey

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. J. H. Nati ◽  
M. B. S. Svendsen ◽  
S. Marras ◽  
S. S. Killen ◽  
J. F. Steffensen ◽  
...  

AbstractHow ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CTmax) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species’ latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CTmax among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.


Sign in / Sign up

Export Citation Format

Share Document