scholarly journals Space Telescope Imaging Spectrograph Ultraviolet Spectra of Large Magellanic Cloud Planetary Nebulae: A Study of Carbon Abundances and Stellar Evolution

2005 ◽  
Vol 622 (1) ◽  
pp. 294-318 ◽  
Author(s):  
Letizia Stanghellini ◽  
Richard A. Shaw ◽  
Diane Gilmore
2003 ◽  
Vol 596 (2) ◽  
pp. 997-1014 ◽  
Author(s):  
Letizia Stanghellini ◽  
Richard A. Shaw ◽  
Bruce Balick ◽  
Max Mutchler ◽  
J. Chris Blades ◽  
...  

1989 ◽  
pp. 352-352
Author(s):  
Stephen J. Meatheringham ◽  
Michael A. Dopita ◽  
Holland. C. Ford ◽  
B. Louise Webster

1993 ◽  
Vol 155 ◽  
pp. 212-212
Author(s):  
M. A. Dopita ◽  
S. J. Meatheringham ◽  
P. R. Wood ◽  
H. C. Ford ◽  
R. C. Bohlin ◽  
...  

We have obtained Hubble Space Telescope (HST) Planetary Camera (PC) images of a number of Magellanic Cloud planetary nebulae. The objects, except for SMP 83 were observed as part of the Cycle I GO program. The observations were made in the [O III] λ5007Å line. The object SMP 83, was observed as part of the GTO program, and in this case observations were also made in the Hα line using the F650N filter. In order to characterise the point spread function, a star was placed at the same point on the chip as the PN. This allowed us to determine the diameters of barely resolved PN in an accurate manner, by convolving the PSF with a function until it matched the appearance of the PN image. The results are given in Table 1.


2019 ◽  
Vol 627 ◽  
pp. A151 ◽  
Author(s):  
T. Shenar ◽  
D. P. Sablowski ◽  
R. Hainich ◽  
H. Todt ◽  
A. F. J. Moffat ◽  
...  

Context. Massive Wolf–Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core collapse. It is not known whether core He-burning WR stars (classical WR; cWR) form predominantly through wind stripping (w-WR) or binary stripping (b-WR). Whereas spectroscopy of WR binaries has so-far largely been avoided because of its complexity, our study focuses on the 44 WR binaries and binary candidates of the Large Magellanic Cloud (LMC; metallicity Z ≈ 0.5 Z⊙), which were identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Aims. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at subsolar metallicity and constraining the impact of binary interaction in forming these stars. Methods. Spectroscopy was performed using the Potsdam Wolf–Rayet (PoWR) code and cross-correlation techniques. Disentanglement was performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status was interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically homogeneous evolution. Results. Among our sample, 28/44 objects show composite spectra and are analyzed as such. An additional five targets show periodically moving WR primaries but no detected companions (SB1); two (BAT99 99 and 112) are potential WR + compact-object candidates owing to their high X-ray luminosities. We cannot confirm the binary nature of the remaining 11 candidates. About two-thirds of the WN components in binaries are identified as cWR, and one-third as hydrogen-burning WR stars. We establish metallicity-dependent mass-loss recipes, which broadly agree with those recently derived for single WN stars, and in which so-called WN3/O3 stars are clear outliers. We estimate that 45  ±  30% of the cWR stars in our sample have interacted with a companion via mass transfer. However, only ≈12  ±  7% of the cWR stars in our sample naively appear to have formed purely owing to stripping via a companion (12% b-WR). Assuming that apparently single WR stars truly formed as single stars, this comprises ≈4% of the whole LMC WN population, which is about ten times less than expected. No obvious differences in the properties of single and binary WN stars, whose luminosities extend down to log L ≈ 5.2 [L⊙], are apparent. With the exception of a few systems (BAT99 19, 49, and 103), the equatorial rotational velocities of the OB-type companions are moderate (veq ≲ 250 km s−1) and challenge standard formalisms of angular-momentum accretion. For most objects, chemically homogeneous evolution can be rejected for the secondary, but not for the WR progenitor. Conclusions. No obvious dichotomy in the locations of apparently single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models.


1997 ◽  
Vol 180 ◽  
pp. 471-471 ◽  
Author(s):  
R. E. Carlos Reyes ◽  
J. E. Steiner ◽  
F. Elizalde

In the present work we have computed the physical parameters and chemical abundances for 45 planetary nebulae (PN) in the Large Magellanic Cloud (LMC) using the photoionization code CLOUDY, developed by Ferland (1993). CLOUDY is used as a subroutine in the code DIANA, developed by Elizalde & Steiner (1996), which minimises indices that measures the difference between the calculated and real nebula.


1999 ◽  
Vol 190 ◽  
pp. 391-392
Author(s):  
Karen M. Vanlandingham ◽  
Greg J. Schwarz ◽  
Sumner Starrfield ◽  
Peter H. Hauschildt ◽  
Steven N. Shore ◽  
...  

In the past 10 years, 6 classical novae have been observed in the Large Magellanic Cloud (LMC). We have begun a study of these objects using ultraviolet spectra obtained by IUE and optical spectra from nova surveys. We are using the results of this study to further our understanding of novae and stellar evolution.Our study includes analysis of both the early, optically thick spectra using model atmospheres (Hauschildt et al. 1992), and the later nebular spectra using optimization of photoionization codes (Ferland 1996; James & Roos 1993). By analysing all the LMC novae in a consistent manner, we can compare their individual results and use their combined properties to calibrate Galactic novae. In addition, our studies can be used to determine the elemental abundances of the nova ejecta, the amount of mass ejected, and the contribution of novae to the ISM abundances. To date we have analysed Nova LMC 1988#1 (Schwarz et al. 1998) and Nova LMC 1990#1 (Vanlandingham et al. 1999), and have obtained preliminary results for Nova LMC 1991. The results of this work are presented in this poster.


2009 ◽  
pp. 65-70 ◽  
Author(s):  
J.L. Payne ◽  
L.A. Tauber ◽  
M.D. Filipovic ◽  
E.J. Crawford ◽  
Horta de

We present the 100 strongest 1.4 GHz point sources from a new mosaic image in the direction of the Large Magellanic Cloud (LMC). The observations making up the mosaic were made using Australia Telescope Compact Array (ATCA) over a ten year period and were combined with Parkes single dish data at 1.4 GHz to complete the image for short spacing. An initial list of co-identifications within 1000 at 0.843, 4.8 and 8.6 GHz consisted of 2682 sources. Elimination of extended objects and artifact noise allowed the creation of a refined list containing 1988 point sources. Most of these are presumed to be background objects seen through the LMC; a small portion may represent compact H ii regions, young SNRs and radio planetary nebulae. For the 1988 point sources we find a preliminary average spectral index (?) of -0.53 and present a 1.4 GHz image showing source location in the direction of the LMC.


1988 ◽  
Vol 327 ◽  
pp. 639 ◽  
Author(s):  
Michael A. Dopita ◽  
Stephen J. Meatheringham ◽  
B. Louise Webster ◽  
Holland C. Ford

Sign in / Sign up

Export Citation Format

Share Document