Experimental Tests for an Evolutionary Trade‐Off between Growth Rate and Yield in E. coli

2006 ◽  
Vol 168 (2) ◽  
pp. 242-251 ◽  
Author(s):  
Maja Novak ◽  
Thomas Pfeiffer ◽  
Richard E. Lenski ◽  
Uwe Sauer ◽  
Sebastian Bonhoeffer
2006 ◽  
Vol 168 (2) ◽  
pp. 242 ◽  
Author(s):  
Novak ◽  
Pfeiffer ◽  
Lenski ◽  
Sauer ◽  
Bonhoeffer

2019 ◽  
Vol 14 (1) ◽  
pp. 28-31 ◽  
Author(s):  
Rowles H. L.

Probiotics are live microorganisms, which when ingested in sufficient amounts, confer health benefits to the host by improving the gut microflora balance. The purpose of this research was to determine whether commercial probiotic products containing multitude of commensal bacteria would reduce the growth rate of pathogenic bacteria, specifically Escherichia coli and Salmonella typhimurium. Growth curves were established, and the growth rates were compared for samples of E. coli, S. typhimurium, Nature’s Bounty Controlled Delivery probiotic, Sundown Naturals Probiotic Balance probiotic, and cocultures of the pathogenic bacteria mixed with the probiotics. The findings of this research were that the commercial probiotics significantly reduced the growth rate of E. coli and S. typhimurium when combined in cocultures. Probiotics containing multiple strains may be taken prophylactically to reduce the risk of bacterial infections caused by E. coli and S. typhimurium. Probiotics could be used to reduce the high global morbidity and mortality rates of diarrheal disease.


2021 ◽  
Author(s):  
Estela Ynes Valencia ◽  
Jackeline Pinheiro Barros ◽  
Thomas Ferenci ◽  
Beny Spira
Keyword(s):  
E Coli ◽  

2016 ◽  
Author(s):  
Shraddha Karve ◽  
Devika Bhave ◽  
Dhanashri Nevgi ◽  
Sutirth Dey

AbstractIn nature, organisms are simultaneously exposed to multiple stresses (i.e. complex environments) that often fluctuate unpredictably. While both these factors have been studied in isolation, the interaction of the two remains poorly explored. To address this issue, we selected laboratory populations ofEscherichia coliunder complex (i.e. stressful combinations of pH, H2O2and NaCl) unpredictably fluctuating environments for ~900 generations. We compared the growth rates and the corresponding trade-off patterns of these populations to those that were selected under constant values of the component stresses (i.e. pH, H2O2and NaCl) for the same duration. The fluctuation-selected populations had greater mean growth rate and lower variation for growth rate over all the selection environments experienced. However, while the populations selected under constant stresses experienced severe tradeoffs in many of the environments other than those in which they were selected, the fluctuation-selected populations could by-pass the across-environment trade-offs completely. Interestingly, trade-offs were found between growth rates and carrying capacities. The results suggest that complexity and fluctuations can strongly affect the underlying trade-off structure in evolving populations.


2012 ◽  
Vol 79 (2) ◽  
pp. 478-487 ◽  
Author(s):  
Suriana Sabri ◽  
Lars K. Nielsen ◽  
Claudia E. Vickers

ABSTRACTSucrose is an industrially important carbon source for microbial fermentation. Sucrose utilization inEscherichia coli, however, is poorly understood, and most industrial strains cannot utilize sucrose. The roles of the chromosomally encoded sucrose catabolism (csc) genes inE. coliW were examined by knockout and overexpression experiments. At low sucrose concentrations, thecscgenes are repressed and cells cannot grow. Removal of either the repressor protein (cscR) or the fructokinase (cscK) gene facilitated derepression. Furthermore, combinatorial knockout ofcscRandcscKconferred an improved growth rate on low sucrose. The invertase (cscA) and sucrose transporter (cscB) genes are essential for sucrose catabolism inE. coliW, demonstrating that no other genes can provide sucrose transport or inversion activities. However,cscKis not essential for sucrose utilization. Fructose is excreted into the medium by thecscK-knockout strain in the presence of high sucrose, whereas at low sucrose (when carbon availability is limiting), fructose is utilized by the cell. Overexpression ofcscA,cscAK, orcscABcould complement the WΔcscRKABknockout mutant or confer growth on a K-12 strain which could not naturally utilize sucrose. However, phenotypic stability and relatively good growth rates were observed in the K-12 strain only when overexpressingcscAB, and full growth rate complementation in WΔcscRKABalso requiredcscAB. Our understanding of sucrose utilization can be used to improveE. coliW and engineer sucrose utilization in strains which do not naturally utilize sucrose, allowing substitution of sucrose for other, less desirable carbon sources in industrial fermentations.


2007 ◽  
Vol 70 (3) ◽  
pp. 543-550 ◽  
Author(s):  
BYENG R. MIN ◽  
WILLIAM E. PINCHAK ◽  
ROBIN C. ANDERSON ◽  
TODD R. CALLAWAY

The effect of commercially available chestnut and mimosa tannins in vitro (experiment 1) or in vivo (experiment 2) on the growth or recovery of Escherichia coli O157:H7 or generic fecal E. coli was evaluated. In experiment 1, the mean growth rate of E. coli O157:H7, determined via the measurement of optical density at 600 nm during anaerobic culture in tryptic soy broth at 37°C, was reduced (P < 0.05) with as little as 400 μg of either tannin extract per ml of culture fluid. The addition of 200, 400, 600, 800, and 1,200 μg of tannins per ml significantly (P < 0.01) reduced the specific bacterial growth rate when compared with the nontannin control. The specific growth rate decreased with increasing dose levels up to 800 μg of tannins per ml. Bacterial growth inhibition effects in chestnut tannins were less pronounced than in mimosa tannins. Chestnut tannin extract addition ranged from 0 to 1,200 μg/ml, and a linear effect (P < 0.05) was observed in cultures incubated for 6 h against the recovery of viable cells, determined via the plating of each strain onto MacConkey agar, of E. coli O157:H7 strains 933 and 86-24, but not against strain 6058. Similar tests with mimosa tannin extract showed a linear effect (P < 0.05) against the recovery of E. coli O157:H7 strain 933 only. The bactericidal effect observed in cultures incubated for 24 h with the tannin preparations was similar, although it was less than that observed from cultures incubated for 6 h. When chestnut tannins (15 g of tannins per day) were infused intraruminally to steers fed a Bermuda grass hay diet in experiment 2, fecal E. coli shedding was lower on days 3 (P < 0.03), 12 (P = 0.08), and 15 (P < 0.001) when compared with animals that were fed a similar diet without tannin supplementation. It was concluded that dietary levels and sources of tannins potentially reduce the shedding of E. coli from the gastrointestinal tract.


2015 ◽  
Vol 11 (4) ◽  
pp. 801 ◽  
Author(s):  
Rutger Hermsen ◽  
Hiroyuki Okano ◽  
Conghui You ◽  
Nicole Werner ◽  
Terence Hwa

Sign in / Sign up

Export Citation Format

Share Document