scholarly journals Preservation of Intrahepatic Hepatitis C Virus (HCV)–Specific CD4+T Cell Responses despite Global Loss of CD4+T Cells in HCV/HIV Coinfection

2007 ◽  
Vol 196 (4) ◽  
pp. 577-586 ◽  
Author(s):  
Chihiro Morishima ◽  
Margaret C. Shuhart ◽  
Christina S. Yoshihara ◽  
Denise M. Paschal ◽  
Melissa A. Silva ◽  
...  
2012 ◽  
Vol 209 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Julian Schulze zur Wiesch ◽  
Donatella Ciuffreda ◽  
Lia Lewis-Ximenez ◽  
Victoria Kasprowicz ◽  
Brian E. Nolan ◽  
...  

Vigorous proliferative CD4+ T cell responses are the hallmark of spontaneous clearance of acute hepatitis C virus (HCV) infection, whereas comparable responses are absent in chronically evolving infection. Here, we comprehensively characterized the breadth, specificity, and quality of the HCV-specific CD4+ T cell response in 31 patients with acute HCV infection and varying clinical outcomes. We analyzed in vitro T cell expansion in the presence of interleukin-2, and ex vivo staining with HCV peptide-loaded MHC class II tetramers. Surprisingly, broadly directed HCV-specific CD4+ T cell responses were universally detectable at early stages of infection, regardless of the clinical outcome. However, persistent viremia was associated with early proliferative defects of the HCV-specific CD4+ T cells, followed by rapid deletion of the HCV-specific response. Only early initiation of antiviral therapy was able to preserve CD4+ T cell responses in acute, chronically evolving infection. Our results challenge the paradigm that HCV persistence is the result of a failure to prime HCV-specific CD4+ T cells. Instead, broadly directed HCV-specific CD4+ T cell responses are usually generated, but rapid exhaustion and deletion of these cells occurs in the majority of patients. The data further suggest a short window of opportunity to prevent the loss of CD4+ T cell responses through antiviral therapy.


Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1170-1178 ◽  
Author(s):  
Arthur Y. Kim ◽  
Georg M. Lauer ◽  
Kei Ouchi ◽  
Marylyn M. Addo ◽  
Michaela Lucas ◽  
...  

AbstractCD8+ T-cell responses are an essential antiviral host defense in persistent viral infections, and their sustained effectiveness is thought to be critically dependent on CD4+ T-helper cells. To determine the relationship between HIV-1–induced CD4+ T-cell depletion and hepatitis C virus (HCV)–specific CD8+ T-cell responses during viral persistence, we studied 103 persons positive for HCV, 74 coinfected with HIV-1. CD8+ T-cell responses to the entire HCV polyprotein were determined by using an interferon-γ enzyme-linked immunospot (ELISpot) assay. Although HIV-1 infection by itself was not associated with a diminished HCV-specific response, HIV-1–associated CD4+ depletion was associated with significantly lower HCV-specific CD8+ T cells (R = 0.48, P < .0001). In contrast, declining CD4+ counts over the same range were not associated with diminished Epstein-Barr virus (EBV)– (R = 0.19, P = .31) or HIV-1–specific (R = –0.13, P = .60) CD8+ T-cell responses in persons infected with all viruses. These data indicate that frequencies of circulating HCV-specific CD8+ T-cell responses are sensitive to absolute CD4+ T-cell counts and provide a possible explanation for the accelerated HCV disease course in persons coinfected with HIV-1 and HCV.


2005 ◽  
Vol 79 (11) ◽  
pp. 6976-6983 ◽  
Author(s):  
Kazushi Sugimoto ◽  
David E. Kaplan ◽  
Fusao Ikeda ◽  
Jin Ding ◽  
Jonathan Schwartz ◽  
...  

ABSTRACT Hepatitis C virus (HCV) frequently persists with an apparently ineffective antiviral T-cell response. We hypothesized that some patients may be exposed to multiple HCV subtypes and that strain-specific T cells could contribute to the viral dynamics in this setting. To test this hypothesis, CD4 T-cell responses to three genotype 1a-derived HCV antigens and HCV antibody serotype were examined in chronically HCV infected (genotypes 1a, 1b, 2, 3, and 4) and spontaneously HCV recovered subjects. Consistent with multiple HCV exposure, 63% of patients infected with genotypes 2 to 4 (genotypes 2-4) and 36% of those infected with genotype 1b displayed CD4 T-cell responses to 1a-derived HCV antigens, while 29% of genotype 2-4-infected patients showed serotype responses to genotype 1. Detection of 1a-specific T cells in patients without active 1a infection suggested prior self-limited 1a infection with T-cell-mediated protection from 1a but not from non-1a viruses. Remarkably, CD4 T-cell responses to 1a-derived HCV antigens were weakest in patients with homologous 1a infection and greater in non-1a-infected patients: proportions of patients responding were 19% (1a), 36% (1b), and 63% (2-4) (P = 0.0006). Increased 1a-specific CD4 T-cell responsiveness in non-1a-infected patients was not due to increased immunogenicity or cross-reactivity of non-1a viruses but directly related to sequence divergence. We conclude that the T-cell response to the circulating virus is either suppressed or not induced in a strain-specific manner in chronically HCV infected patients and that, despite their ability to clear one HCV strain, patients may be reinfected with a heterologous strain that can then persist. These findings provide new insights into host-virus interactions in HCV infection that have implications for vaccine development.


npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Stefania Capone ◽  
Anthony Brown ◽  
Felicity Hartnell ◽  
Mariarosaria Del Sorbo ◽  
Cinzia Traboni ◽  
...  

Abstract Simian adenoviral and modified vaccinia Ankara (MVA) viral vectors used in heterologous prime-boost strategies are potent inducers of T cells against encoded antigens and are in advanced testing as vaccine carriers for a wide range of infectious agents and cancers. It is unclear if these responses can be further enhanced or sustained with reboosting strategies. Furthermore, despite the challenges involved in MVA manufacture dose de-escalation has not been performed in humans. In this study, healthy volunteers received chimpanzee-derived adenovirus-3 and MVA vaccines encoding the non-structural region of hepatitis C virus (ChAd3-NSmut/MVA-NSmut) 8 weeks apart. Volunteers were then reboosted with a second round of ChAd3-NSmut/MVA-NSmut or MVA-NSmut vaccines 8 weeks or 1-year later. We also determined the capacity of reduced doses of MVA-NSmut to boost ChAd3-NSmut primed T cells. Reboosting was safe, with no enhanced reactogenicity. Reboosting after an 8-week interval led to minimal re-expansion of transgene-specific T cells. However, after a longer interval, T cell responses expanded efficiently and memory responses were enhanced. The 8-week interval regimen induced a higher percentage of terminally differentiated and effector memory T cells. Reboosting with MVA-NSmut alone was as effective as with ChAd3-NSmut/MVA-NSmut. A ten-fold lower dose of MVA (2 × 107pfu) induced high-magnitude, sustained, broad, and functional Hepatitis C virus (HCV)-specific T cell responses, equivalent to standard doses (2 × 108 pfu). Overall, we show that following Ad/MVA prime-boost vaccination reboosting is most effective after a prolonged interval and is productive with MVA alone. Importantly, we also show that a ten-fold lower dose of MVA is as potent in humans as the standard dose.


PLoS Medicine ◽  
2006 ◽  
Vol 3 (12) ◽  
pp. e492 ◽  
Author(s):  
Arthur Y Kim ◽  
Julian Schulze zur Wiesch ◽  
Thomas Kuntzen ◽  
Joerg Timm ◽  
Daniel E Kaufmann ◽  
...  

2003 ◽  
Vol 197 (3) ◽  
pp. 375-385 ◽  
Author(s):  
Hiroeki Sahara ◽  
Nilabh Shastri

CD4 T cells regulate immune responses that cause chronic graft rejection and graft versus host disease but their target antigens remain virtually unknown. We developed a new method to identify CD4 T cell–stimulating antigens. LacZ-inducible CD4 T cells were used as a probe to detect their cognate peptide/MHC II ligand generated in dendritic cells fed with Escherichia coli expressing a library of target cell genes. The murine H46 locus on chromosome 7 was thus found to encode the interleukin 4–induced IL4i1 gene. The IL4i1 precursor contains the HAFVEAIPELQGHV peptide which is presented by Ab major histocompatibility complex class II molecule via an endogenous pathway in professional antigen presenting cells. Both allelic peptides bind Ab and a single alanine to methionine substitution at p2 defines nonself. These results reveal novel features of H loci that regulate CD4 T cell responses as well as provide a general strategy for identifying elusive antigens that elicit CD4 T cell responses to tumors or self-tissues in autoimmunity.


Hepatology ◽  
2003 ◽  
Vol 38 ◽  
pp. 436-436
Author(s):  
H HOLZMANN ◽  
J ABERLE ◽  
P STEINDLMUNDA ◽  
E FORMAN ◽  
W JESSNER ◽  
...  

Blood ◽  
2016 ◽  
Vol 127 (12) ◽  
pp. 1606-1609 ◽  
Author(s):  
Fabian C. Verbij ◽  
Annelies W. Turksma ◽  
Femke de Heij ◽  
Paul Kaijen ◽  
Neubury Lardy ◽  
...  

Key Points CD4+ T-cell responses in 2 patients with acquired TTP. CUB2 domain-derived core peptides are recognized by CD4+ T cells present in 2 patients with acquired TTP.


2008 ◽  
Vol 82 (15) ◽  
pp. 7567-7577 ◽  
Author(s):  
Joana Caetano ◽  
António Martinho ◽  
Artur Paiva ◽  
Beatriz Pais ◽  
Cristina Valente ◽  
...  

ABSTRACT CD8 T cells play a major role in antiviral immune responses. Their importance for progression to chronic hepatitis C and response to treatment are still unclear. To address these issues, hepatitis C virus (HCV)-specific CD8 T-cell responses were monitored, at the single-cell level, using HLA class I pentamers specific for HCV core and HCV NS3 epitopes, in 23 chronically infected patients during treatment with pegylated alpha interferon and ribavirin. Patients who presented a sustained-response to therapy had stronger HCV-specific CD8 T-cell responses at all time points studied. Moreover, there were clear differences in the phenotypes of these cells during therapy: in responder patients, terminally differentiated effector cells increased more rapidly, and their frequency was always higher than in nonresponder patients. Sustained-responder patients also showed a higher frequency of HCV-specific CD8 T cells producing cytotoxic factors. Overall, a late and inefficient differentiation process of HCV-specific CD8 T cells might be associated with lack of response to treatment. A better knowledge of the mechanisms underlying this impairment may be important for the development of new therapeutic strategies to maintain, restore, or increase CD8 T-cell effectiveness in chronic HCV infection.


Sign in / Sign up

Export Citation Format

Share Document