Cycad (Cycadales) Chromosome Numbers Are Not Correlated with Genome Size

2014 ◽  
Vol 175 (9) ◽  
pp. 986-997 ◽  
Author(s):  
Root Gorelick ◽  
Danielle Fraser ◽  
Ben J. M. Zonneveld ◽  
Damon P. Little
Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1436
Author(s):  
Magdalena Senderowicz ◽  
Teresa Nowak ◽  
Magdalena Rojek-Jelonek ◽  
Maciej Bisaga ◽  
Laszlo Papp ◽  
...  

The evolution of the karyotype and genome size was examined in species of Crepis sensu lato. The phylogenetic relationships, inferred from the plastid and nrITS DNA sequences, were used as a framework to infer the patterns of karyotype evolution. Five different base chromosome numbers (x = 3, 4, 5, 6, and 11) were observed. A phylogenetic analysis of the evolution of the chromosome numbers allowed the inference of x = 6 as the ancestral state and the descending dysploidy as the major direction of the chromosome base number evolution. The derived base chromosome numbers (x = 5, 4, and 3) were found to have originated independently and recurrently in the different lineages of the genus. A few independent events of increases in karyotype asymmetry were inferred to have accompanied the karyotype evolution in Crepis. The genome sizes of 33 Crepis species differed seven-fold and the ancestral genome size was reconstructed to be 1 C = 3.44 pg. Both decreases and increases in the genome size were inferred to have occurred within and between the lineages. The data suggest that, in addition to dysploidy, the amplification/elimination of various repetitive DNAs was likely involved in the genome and taxa differentiation in the genus.


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 620-623
Author(s):  
Thomas G. Ranney ◽  
Connor F. Ryan ◽  
Lauren E. Deans ◽  
Nathan P. Lynch

Illicium is an ancient genus and member of the earliest diverging angiosperms known as the Amborellales, Nymphaeales, and Austrobaileyales (ANA) grade. These adaptable, broadleaf evergreen shrubs, including ≈40 species distributed throughout Asia and North America, are valued for diverse culinary, medicinal, and ornamental applications. The study of cytogenetics of Illicium can clarify various discrepancies and further elucidate chromosome numbers, ploidy, and chromosome and genome size evolution in this basal angiosperm lineage and provide basic information to guide plant breeding and improvement programs. The objectives of this study were to use flow cytometry and traditional cytology to determine chromosome numbers, ploidy levels, and relative genome sizes of cultivated Illicium. Of the 29 taxa sampled, including ≈11 species and one hybrid, 2C DNA contents ranged from 24.5 pg for Illicium lanceolatum to 27.9 pg for Illicium aff. majus. The genome sizes of Illicium species are considerably higher than other ANA grade lineages indicating that Illicium went through considerable genome expansion compared with sister lineages. The New World sect. Cymbostemon had a slightly lower mean 2C genome size of 25.1 pg compared with the Old World sect. Illicium at 25.9 pg, providing further support for recognizing these taxonomic sections. All taxa appeared to be diploid and 2n = 2x = 28, except for Illicium floridanum and Illicium mexicanum which were found to be 2n = 2x = 26, most likely resulting from dysploid reduction after divergence into North America. The base chromosome number of x = 14 for most Illicium species suggests that Illicium are ancient paleotetraploids that underwent a whole genome duplication derived from an ancestral base of x = 7. Information on cytogenetics, coupled with phylogenetic analyses, identifies some limitations, but also considerable potential for the development of plant breeding and improvement programs with this genus.


Author(s):  
Hai-Jun Wang ◽  
Xu Zhao ◽  
Chi Xu ◽  
Yang Liu ◽  
Ying Liu ◽  
...  

The origin of the nucleus remains a great mystery in life science, although nearly two centuries have passed since the discovery of nuclei. To date, studies of eukaryogenesis have focused largely on micro-evolutionary explanations. Here, we examined macro-patterns of C-values (the total amount of DNA within the haploid chromosome set of an organism) for over 110,000 species and the chromosome numbers for over 11,000 species and their potential links with the state of atmospheric oxidation over geological time. Eukaryogenesis was in sync with an over 2.5 order-of-magnitude increase in genome size from prokaryote to eukaryote, and also with a rapid rise of atmospheric oxidation, suggesting that eukaryogenesis would have resulted from a regime shift of genomes driven by the oxidation-driven complexification and structuralization (e.g. chromatin packing).


2009 ◽  
Vol 44 (3) ◽  
pp. 307-322 ◽  
Author(s):  
Ismael Sánchez-Jiménez ◽  
Jaume Pellicer ◽  
Oriane Hidalgo ◽  
Sònia Garcia ◽  
Teresa Garnatje ◽  
...  

2020 ◽  
Author(s):  
Jonna Sofia Eriksson ◽  
Christine D. Bacon ◽  
Dominic J. Bennett ◽  
Bernard E. Pfeil ◽  
Bengt Oxelman ◽  
...  

Abstract Background: The great diversity in plant genome size and chromosome number is partly due to polyploidization (i.e., genome doubling events). The differences in genome size and chromosome number among diploid plant species can be a window into the intriguing phenomenon of past genome doubling that may be obscured through time by the process of diploidization. The genus Hibiscus L. (Malvaceae) has a wide diversity of chromosome numbers and a complex genomic history. Hibiscus is ideal for exploring past genomic events because although two ancient genome duplication events have been identified, more are likely to be found due to its diversity of chromosome numbers. To reappraise the history of whole genome duplication events, we tested a series of scenarios describing different polyploidization events.Results: Using target sequence capture, we generated 87 orthologous genes from four diploid species. We detected paralogues in >54% putative single-copy genes. 34 of these genes were selected for testing three different genome duplication scenarios using gene counting. Species of Hibiscus shared one genome duplication with H. syriacus and one whole genome duplication occurred along the branch leading to H. syriacus.Conclusions: Here, we corroborated the independent genome doubling previously found in the lineage leading to H. syriacus and a shared genome doubling of this lineage and the remainder of Hibiscus. Additionally, we found a previously undiscovered genome duplication shared by the /Pavonia and /Malvaviscus clades (both nested within Hibiscus) with the occurrences of two copies in what were otherwise single-copy genes. Our results highlight the complexity of genomic diversity in some plant groups, which makes orthology assessment and accurate phylogenomic inference difficult.


2018 ◽  
Vol 12 (3) ◽  
pp. 403-420 ◽  
Author(s):  
Petra Macháčková ◽  
Ľuboš Majeský ◽  
Michal Hroneš ◽  
Eva Hřibová ◽  
Bohumil Trávníček ◽  
...  

The species-rich and widespread genusTaraxacumF. H. Wiggers, 1780 (Asteraceae subfamily Cichorioideae) is one of the most taxonomically complex plant genera in the world, mainly due to its combination of different sexual and asexual reproduction strategies. Polyploidy is usually confined to apomictic microspecies, varying from 3x to 6x (rarely 10x). In this study, we focused on Taraxacum sect.Taraxacum(= T.sect.Ruderalia;T.officinalegroup), i.e., the largest group within the genus. We counted chromosome numbers and measured the DNA content for species sampled in Central Europe, mainly in Czechia. The chromosome number of the 28 species (T.aberransHagendijk, Soest & Zevenbergen, 1974,T.atrovirideŠtěpánek & Trávníček, 2008,T.atroxKirschner & Štěpánek, 1997,T.baeckiiformeSahlin, 1971,T.chrysophaenumRailonsala, 1957,T.coartatumG.E. Haglund, 1942,T.corynodesG.E. Haglund, 1943,T.crassumH. Øllgaard & Trávníček, 2003,T.deltoidifronsH. Øllgaard, 2003,T.diastematicumMarklund, 1940,T.gesticulansH. Øllgaard, 1978,T.glossodonSonck & H. Øllgaard, 1999,T.guttigestansH. Øllgaard in Kirschner & Štěpánek, 1992,T.huelphersianumG.E. Haglund, 1935,T.ingensPalmgren, 1910,T.jugiferumH. Øllgaard, 2003,T.laticordatumMarklund, 1938,T.lojoenseH. Lindberg, 1944 (=T.debrayiHagendijk, Soest & Zevenbergen, 1972,T.lippertianumSahlin, 1979),T.lucidifronsTrávníček, ineditus,T.obtusifronsMarklund, 1938,T.ochrochlorumG.E. Haglund, 1942,T.ohlseniiG.E. Haglund, 1936,T.perdubiumTrávníček, ineditus,T.praestabileRailonsala, 1962,T.sepulcrilobumTrávníček, ineditus,T.sertatumKirschner, H. Øllgaard & Štěpánek, 1997,T.subhuelphersianumM.P. Christiansen, 1971,T.valensMarklund, 1938) is 2n = 3x = 24. The DNA content ranged from 2C = 2.60 pg (T.atrox) to 2C = 2.86 pg (T.perdubium), with an average value of 2C = 2.72 pg. Chromosome numbers are reported for the first time for 26 species (all butT.diastematicumandT.obtusifrons), and genome size estimates for 26 species are now published for the first time.


HortScience ◽  
2011 ◽  
Vol 46 (4) ◽  
pp. 567-570 ◽  
Author(s):  
Ryan N. Contreras ◽  
John M. Ruter

Genome size estimates and chromosome number information can be useful for studying the evolution or taxonomy of a group and also can be useful for plant breeders in predicting cross-compatibility. Callicarpa L. is a group of ≈140 species with nearly worldwide distribution. There are no estimates of genome size in the literature and the information on chromosome numbers is limited. Genome size estimates based on flow cytometry are reported here for 16 accessions of Callicarpa comprising 14 species in addition to chromosome counts on six species. Chromosome counts were conducted by staining meristematic cells of roots tips using modified carbol fuchsin. Holoploid genome size estimates ranged from 1.34 pg to 3.48 pg with a mean of 1.74 pg. Two tetraploids (2n = 4x = 68; C. salicifolia P'ei & W. Z. Fang and C. macrophylla Vahl GEN09-0081) were identified based on holoploid genome size and confirmed by chromosome counts. There was little variation among species for monoploid genome size. 1Cx-values ranged from 0.67 pg to 0.88 pg with a mean of 0.77 pg. Chromosome counts for six species revealed a base chromosome number of x = 17. Callicarpa chejuensis Y. H. Chung & H. Kim, C. japonica Thunb. ‘Leucocarpa’, C. longissima Merr., and C. rubella Lindl. were confirmed as diploids (2n = 2x = 34). Cytology supported flow cytometry data that C. salicifolia and C. macrophylla GEN09-0081 were tetraploids. The two accessions of C. macrophylla included in the study were found to be of different ploidy levels. The presence of two ploidy levels among and within species indicates that polyploidization events have occurred in the genus.


HortScience ◽  
2021 ◽  
pp. 1-5
Author(s):  
S. Brooks Parrish ◽  
Renjuan Qian ◽  
Zhanao Deng

Lantana species are an important component of the U.S. environmental horticulture industry. The most commonly produced and used species are L. camara and, on a smaller scale, L. montevidensis. Both were introduced to the United States from Central and/or South America. Lantana species native to the continental United States include L. canescens, L. depressa, L. involucrata, etc. and most of them have not been well exploited. This study was conducted to obtain information about somatic chromosome numbers, karyotypes, and genome size of these five species. Nuclear DNA content in these species ranged from 2.74 pg/2C (L. involucrata) to 6.29 pg/2C (L. depressa var. depressa). Four chromosome numbers were observed: 2n = 2x = 22 in L. camara ‘Lola’ and ‘Denholm White’, 2n = 4x = 44 in L. depressa var. depressa, 2n = 2x = 24 in L. canescens and L. involucrata, and 2n = 3x = 36 in L. montevidensis. Two basic chromosome numbers were observed: x = 11 in L. camara and L. depressa var. depressa, and x = 12 in L. canescens, L. involucrata, and L. montevidensis. Analysis of somatic metaphases resulted in formulas of 20m + 2sm for L. camara ‘Lola’ and ‘Denholm White’, 12m + 12sm for L. canescens, 44m for L. depressa var. depressa, 10m + 14sm for L. involucrata, and 32m + 4sm for L. montevidensis. Satellites were identified in all five species, but were associated with a different chromosome group in different species. L. depressa var. depressa had the longest total chromatin length (146.78 µm) with a range of 1.88 to 4.41 µm for individual chromosomes. The maximum arm ratio was observed in L. canescens, with a ratio of 2.5 in chromosome group 3. L. depressa var. depressa was the only species that had all of its centromeres located in the median region of the chromosome. The results show significant differences in nuclear DNA content, chromosome number, and karyotype among three native and two introduced lantana species and will help to identify, preserve, protect, and use native lantana species. The information will be helpful in assessing the ploidy levels in the genus by flow cytometry.


Genome ◽  
2013 ◽  
Vol 56 (8) ◽  
pp. 437-449 ◽  
Author(s):  
J. Pellicer ◽  
L.J. Kelly ◽  
C. Magdalena ◽  
I.J. Leitch

Nymphaeales are the most species-rich lineage of the earliest diverging angiosperms known as the ANA grade (Amborellales, Nymphaeales, Austrobaileyales), and they have received considerable attention from morphological, physiological, and ecological perspectives. Although phylogenetic relationships between these three lineages of angiosperms are mainly well resolved, insights at the whole genome level are still limited because of a dearth of information. To address this, genome sizes and chromosome numbers in 34 taxa, comprising 28 species were estimated and analysed together with previously published data to provide an overview of genome size and chromosome diversity in Nymphaeales. Overall, genome sizes were shown to vary 10-fold and chromosome numbers and ploidy levels ranged from 2n = 2x = 18 to 2n = 16x = ∼224. Distinct patterns of genome diversity were apparent, reflecting the differential incidence of polyploidy, changes in repetitive DNA content, and chromosome rearrangements within and between genera. Using model-based approaches, ancestral genome size and basic chromosome numbers were reconstructed to provide insights into the dynamics of genome size and chromosome number evolution. Finally, by combining additional data from Amborellales and Austrobaileyales, a comprehensive overview of genome sizes and chromosome numbers in these early diverging angiosperms is presented.


Sign in / Sign up

Export Citation Format

Share Document