Estimating native and invasive crayfish distributions in relation to culvert barriers with environmental DNA

2019 ◽  
Vol 38 (3) ◽  
pp. 629-641 ◽  
Author(s):  
Kousuke Ikeda ◽  
Hideyuki Doi ◽  
Shigeharu Terui ◽  
Atsuko Kato ◽  
Takashi Mitsuzuka ◽  
...  
2017 ◽  
Author(s):  
Wang Cai ◽  
Zhuxin Ma ◽  
Chunyan Yang ◽  
Lin Wang ◽  
Wenzhi Wang ◽  
...  

AbstractThe Honghe-Hani landscape in China is a UNESCO World Natural Heritage site due to the beauty of its thousands of rice terraces, but these structures are in danger from the invasive crayfish Procambarus clarkii. Crayfish dig nest holes, which collapse terrace walls and destroy rice production. Under the current control strategy, farmers self-report crayfish and are issued pesticide, but this strategy is not expected to eradicate the crayfish nor to prevent their spread since farmers are not able to detect small numbers of crayfish. Thus, we tested whether environmental DNA (eDNA) from paddy-water samples could provide a sensitive detection method. In an aquarium experiment, Real-time Quantitative polymerase chain reaction (qPCR) successfully detected crayfish, even at a simulated density of one crayfish per average-sized paddy (with one false negative). In a field test, we tested eDNA and bottle traps against direct counts of crayfish. eDNA successfully detected crayfish in all 25 paddies where crayfish were observed and in none of the 7 paddies where crayfish were absent. Bottle-trapping was successful in only 68% of the crayfish-present paddies. eDNA concentrations also correlated positively with crayfish counts. In sum, these results suggest that single samples of eDNA are able to detect small crayfish populations, but not perfectly. Thus, we conclude that a program of repeated eDNA sampling is now feasible and likely reliable for measuring crayfish geographic range and for detecting new invasion fronts in the Honghe Hani landscape, which would inform regional control efforts and help to prevent the further spread of this invasive crayfish.


2018 ◽  
Vol 84 ◽  
pp. 564-572 ◽  
Author(s):  
Aurora N. Geerts ◽  
Pieter Boets ◽  
Stef Van den Heede ◽  
Peter Goethals ◽  
Christine Van der heyden

2015 ◽  
Vol 21 (1) ◽  
pp. 159-163 ◽  
Author(s):  
Chester R. Figiel ◽  
Sandra Bohn

Abstract We examined methods for detecting environmental DNA of the invasive white river crayfish Procambarus zonangulus. In a laboratory experiment, we investigated detection capability in benthic sediment samples and in water samples in six flow-through tanks. Additionally we determined whether crayfish density (low = 0.67 or high = 2.69 crayfish·m-2) or crayfish time in tanks influenced DNA detectability (collection of samples on Days 2, 5, 8 and 15). Species-specific primers and probes were designed for P. zonangulus and their specificity was tested against other crayfish species. Limits of detection and quantification were specified for the target DNA sequence by means of quantitative PCR amplifications on dilution series of known amounts of P. zonangulus DNA. We detected crayfish DNA in 14 of the 24 benthic sediment samples and in two of the 24 water samples. DNA detection was found in benthic sediment samples in at least two tanks at every sampling period, while DNA detection was found in water samples only on Day 8. Crayfish DNA was detected in benthic sediment and water samples independently of crayfish density. Crayfish at both densities were observed to ‘explore’ all areas of the tank and move irrespective of diurnal time or conspecific presence. These behavior patterns were observed throughout the 15 day experiment and likely resulted in the positive detections, especially in benthic sediment samples. We believe that these methods could benefit monitoring of invasive crayfish species, although there is no doubt that further optimization and more research is needed to evaluate these techniques in the wild.


Author(s):  
Yoshihisa AKAMATSU ◽  
Takayoshi TSUZUKI ◽  
Ryota YOKOYAMA ◽  
Yayoi FUNAHASHI ◽  
Munehiro OHTA ◽  
...  

Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Chapter 10 “Environmental DNA for functional diversity” discusses the potential of environmental DNA to assess functional diversity. It first focuses on DNA metabarcoding and discusses the extent to which this approach can be used and/or optimized to retrieve meaningful information on the functions of the target community. This knowledge usually involves coarsely defined functional groups (e.g., woody, leguminous, graminoid plants; shredders or decomposer soil organisms; pathogenicity or decomposition role of certain microorganisms). Chapter 10 then introduces metagenomics and metatranscriptomics approaches, their advantages, but also the challenges and solutions to appropriately sampling, sequencing these complex DNA/RNA populations. Chapter 10 finally presents several strategies and software to analyze metagenomes/metatranscriptomes, and discusses their pros and cons.


Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Environmental DNA (eDNA), i.e. DNA released in the environment by any living form, represents a formidable opportunity to gather high-throughput and standard information on the distribution or feeding habits of species. It has therefore great potential for applications in ecology and biodiversity management. However, this research field is fast-moving, involves different areas of expertise and currently lacks standard approaches, which calls for an up-to-date and comprehensive synthesis. Environmental DNA for biodiversity research and monitoring covers current methods based on eDNA, with a particular focus on “eDNA metabarcoding”. Intended for scientists and managers, it provides the background information to allow the design of sound experiments. It revisits all steps necessary to produce high-quality metabarcoding data such as sampling, metabarcode design, optimization of PCR and sequencing protocols, as well as analysis of large sequencing datasets. All these different steps are presented by discussing the potential and current challenges of eDNA-based approaches to infer parameters on biodiversity or ecological processes. The last chapters of this book review how DNA metabarcoding has been used so far to unravel novel patterns of diversity in space and time, to detect particular species, and to answer new ecological questions in various ecosystems and for various organisms. Environmental DNA for biodiversity research and monitoring constitutes an essential reading for all graduate students, researchers and practitioners who do not have a strong background in molecular genetics and who are willing to use eDNA approaches in ecology and biomonitoring.


Sign in / Sign up

Export Citation Format

Share Document