Local Adaptation to Biotic Interactions: A Meta-analysis across Latitudes

2020 ◽  
Vol 195 (3) ◽  
pp. 395-411 ◽  
Author(s):  
Anna L. Hargreaves ◽  
Rachel M. Germain ◽  
Megan Bontrager ◽  
Joshua Persi ◽  
Amy L. Angert
2019 ◽  
Author(s):  
Anna L. Hargreaves ◽  
Rachel M. Germain ◽  
Megan Bontrager ◽  
Joshua Persi ◽  
Amy L. Angert

AbstractLocal adaptation to broad-scale environmental heterogeneity can increase species’ distributions and diversification, but which environmental components commonly drive local adaptation— particularly the importance of biotic interactions—is unclear. Biotic interactions should drive local adaptation when they impose consistent divergent selection; if this is common we expect experiments to detect more frequent and stronger local adaptation when biotic interactions are left intact. We tested this hypothesis using a meta-analysis of common-garden experiments from 138 studies (149 taxa). Across studies, local adaptation was common and biotic interactions affected fitness. Nevertheless, local adaptation was neither more common nor stronger when biotic interactions were left intact, either between experimental treatments within studies (control vs. biotic interactions experimentally manipulated) or between studies that used natural vs. biotically-altered transplant environments. However, tropical studies, which comprised only 7% of our data, found strong local adaptation in intact environments but not when negative biotic interactions were ameliorated, suggesting that interactions frequently drive local adaptation in the tropics. Our results suggest that biotic interactions often fail to drive local adaptation even though they affect fitness, perhaps because the temperate-zone biotic environment is less predictable at the spatiotemporal scales required for local adaptation.


2016 ◽  
Author(s):  
Eleanor K. O’Brien ◽  
Megan Higgie ◽  
Alan Reynolds ◽  
Ary A. Hoffmann ◽  
Jon R. Bridle

ABSTRACTPredicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species Distribution Models (SDMs) use the current relationship between environmental variation and species’ abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (1) that the relationship of environment with abundance or fitness is constant throughout a species’ range and will remain so in future, and (2) that abiotic factors (e.g. temperature, humidity) determine species’ distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high altitude sites, and declined towards warmer, low altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species’ range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high altitude than low altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade-offs that would favour local adaptation. These findings highlight the importance of (1) measuring genetic variation of key traits under ecologically relevant conditions, and (2) considering the effect of biotic interactions when predicting species’ responses to environmental change.


2019 ◽  
Author(s):  
Diana J. Rennison ◽  
Seth M. Rudman ◽  
Dolph Schluter

AbstractThe processes of local adaptation and ecological speciation are often strongly shaped by biotic interactions such as competition and predation. One of the strongest lines of evidence that biotic interactions drive evolution comes from repeated divergence of lineages in association with repeated changes in the community of interacting species. Yet, relatively little is known about the repeatability of changes in gut microbial communities and their role in adaptation and divergence of host populations in nature. Here we utilize three cases of rapid, parallel adaptation and speciation in freshwater threespine stickleback to test for parallel changes in associated gut microbiomes. We find that features of the gut microbial communities have shifted repeatedly in the same direction in association with parallel divergence and speciation of stickleback hosts. These results suggest that changes to gut microbiomes can occur rapidly and predictably in conjunction with host evolution, and that host-microbe interactions might play an important role in host adaptation and diversification.


Heredity ◽  
2011 ◽  
Vol 106 (3) ◽  
pp. 404-420 ◽  
Author(s):  
D J Fraser ◽  
L K Weir ◽  
L Bernatchez ◽  
M M Hansen ◽  
E B Taylor

2020 ◽  
Author(s):  
Benjamin G Freeman ◽  
Dolph Schluter ◽  
Joseph A Tobias

AbstractWhere is evolution fastest? The biotic interactions hypothesis proposes that greater species richness creates more ecological opportunity, driving faster evolution at low latitudes, whereas the “empty niches” hypothesis proposes that ecological opportunity is greater where diversity is low, spurring faster evolution at high latitudes. Here we tested these contrasting predictions by analyzing rates of bird beak evolution for a global dataset of 1141 sister pairs of birds. Beak size evolves at similar rates across latitudes, while beak shape evolves faster in the temperate zone, consistent with the empty niches hypothesis. We show in a meta-analysis that trait evolution and recent speciation rates are faster in the temperate zone, while rates of molecular evolution are slightly faster in the tropics. Our results suggest that drivers of evolutionary diversification are more potent at higher latitudes, thus calling into question multiple hypotheses invoking faster tropical evolution to explain the latitudinal diversity gradient.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Megan A. Rúa ◽  
Anita Antoninka ◽  
Pedro M. Antunes ◽  
V. Bala Chaudhary ◽  
Catherine Gehring ◽  
...  

2011 ◽  
Vol 279 (1734) ◽  
pp. 1761-1767 ◽  
Author(s):  
Miguel Verdú ◽  
Lorena Gómez-Aparicio ◽  
Alfonso Valiente-Banuet

Biotic interactions assembling plant communities can be positive (facilitation) or negative (competition) and operate simultaneously. Facilitative interactions and posterior competition are among the mechanisms triggering succession, thus representing a good scenario for ecological restoration. As distantly related species tend to have different phenotypes, and therefore different ecological requirements, they can coexist, maximizing facilitation and minimizing competition. We suggest including phylogenetic relatedness together with phenotypic information as a predictor for the net effects of the balance between facilitation and competition in nurse-based restoration experiments. We quantify, by means of a Bayesian meta-analysis of nurse-based restoration experiments performed worldwide, the importance of phylogenetic relatedness and life-form disparity in the survival, growth and density of facilitated plants. We find that the more similar the life forms of neighbouring plants are the greater the positive effect of phylogenetic distance is on survival and density. This result suggests that other characteristics beyond life form are also contained in the phylogeny, and the larger the phylogenetic distance, the less is the niche overlap, and therefore the less is the competition. As a general rule, we can maximize the success of the nurse-based practices by increasing life-form disparity and phylogenetic distances between the neighbour and the facilitated plant.


PLoS ONE ◽  
2008 ◽  
Vol 3 (12) ◽  
pp. e4010 ◽  
Author(s):  
Roosa Leimu ◽  
Markus Fischer

Sign in / Sign up

Export Citation Format

Share Document